EMI防治技巧总结
EMI防治技巧 包含EMI和EMS的EMC因为各国均立下法规规范,成为电子产品设计者无可回避的问题。面临各种EMI模式和各类EMI抑制方法,该如何因地制宜
电磁兼容问题EMC因为各国均立下法规规范,成为电子产品设计者无可回避的问题。面临各种EMI模式和各类EMI抑制方法,该如何因地制宜选择最佳对策让产品通过测试,同时又必须尽量降低成本强化产品竞争力,是所有电子产品设计人员必须仔细评估思考的课题。
一、EMI类型与解决方法
所谓EMC(Electromagnetic Compatibility;电磁共容)实际上包含EMI(Electromagnetic Interference;电磁干扰)及EMS(Electromagnetic Sensibility;电磁抗干扰)两大部份。
EMI指的是电气产品本身通电后,因电磁感应效应所产生的电磁波对周遭电子设备所造成的干扰影响,EMS则是指电气产品本身对外来电磁波的干扰防御能力,也就是电磁场的免疫程度。
简单来说,只要是需要电力工作的产品都会有EMI问题,一个电子产品中的EMI来源多半来自交换式电源供应回路(Switching Power Supply Circuit)、振荡器(Crystal)和各类时钟信号(Clock Signal),而根据传导模式不同,EMI可分为接触传导(Conducted Emission)和幅射传导(Radiated Emission)两类。
接触传导是由电源供应回路所形成的电磁波噪声,透过实体的电源线或信号导线传送至电源电路内的一种电磁波干扰模式,此状况会造成与干扰设备使用同一电源电路的电气设备被电磁噪声干扰,产生功能异常现象,通常发生在较低频;幅射传导则是电路本身通电之后,由电磁感应效应所产生的电磁波幅射发散所形成的电磁干扰模式,常见于高频。
幅射传导EMI产生的问题通常较接触传导严重,也更为棘手,其解决方式有下列几种:
1. 在干扰源加LC滤波回路。
2. 在I/O端加上DeCap by pass to Ground, 把噪声导入大地。
3. 用遮蔽隔离(Shielding)的方式把电磁波包覆在遮蔽罩内。
4. 尽量将PCB的地面积扩张。
5. 产品内部尽量少使用扁平电缆或实体线。
6. 产品内部的实体线尽量做成绞线以抑制噪声幅射,同时在扁平电缆的I/O端加上DeCap。
7. 在差模信号线的始端或末端加上共模滤波器(Common Mode Filter)。
8. 遵循一定的模拟和数字布线原则。
此外,EMI的形成又可分为共模幅射(Common Mode)和差模幅射(Differential Mode)两类。共模幅射包括共地阻抗之共模干扰(Common-Mode Coupling)和电磁场对导线的共模干扰(Field tocable/trace Common-Mode Coupling),前者是因噪声产生源与受害电路间共享同一接地电阻所产生的共模干扰,解决方法可藉由实行地的切割来必免共地干扰问题;后者则为高电磁能量所形成的电磁场对设备间之配线所造成的干扰,可藉由遮蔽隔离(Shielding)的因应方法来处理场对线的干扰问题。
至于差模幅射,常见的是导线对导线的差模干扰(Cable to Cable Differential-Mode Coupling),干扰途径为某一导线内的干扰噪声感染到其他导线而馈入受害电路,属于近场干扰的一种,可藉由加宽线与线之间的距离来处理此类干扰问题。
二、常见EMI抑制方式
目前对于EMI的常见抑制方式包括屏蔽法(Shielding)、扩展频谱法(Spread Spectrum)、使用滤波器(Filter)等,以及透过整合接地、布线、搭接等层面来防治。
电磁屏蔽法大部份是用来屏蔽300MHz以上的电磁噪声,例如法拉第盖的使用就是一例,此外,运用遮蔽复合材料也是常见的手法,例如手机就常见以真空电镀方式,在塑料壳内部布满一层如镍之类的屏蔽材质,藉此隔绝电磁波发散。
扩展频谱法则是用来将时钟(Clock)的信号展频,使其峰值(Peak)信号波形振幅减低来降低信号的峰值位准,目前有些BIOS已提供内建的扩频功能,可让用户自行设定。使用扩频法需要在信号失真度和EMI减弱程度之间取得平衡,一般是取1%~1.5%,若超过3%通常就会让信号过于失真而不可行。
此外,滤波器或滤波回路的使用因为成本低廉且SMD(表面黏着)制程的加工需求,所以最为一般设计工程师采用。滤波器的使用机会和模式根据不同防治需求来决定,例如大电流的Bead可用在电源电路的路径(Power Trace)上;一般的Bead可用来抑制某特定频率的噪声信号;CMF则用来抑制USB、1394、LVDS等差模线路的噪声幅射问题。
对于EMI的抑制有诸多解决方式,必须因时因地制宜选择,只要有效就是好的防制方法,并没有哪一种特定方式特别胜出。
三、高速数字电路及模拟-数字混合电路EMI防治法
由于指令周期的提升和高速传输接口的应用,目前数字电路已走向高速化。在高速数字电路中,只要阻抗匹配接近理想的阻值(以铜线被覆于FR4材质而言约50奥姆),让所有信号线都成为传输线(Transmission Line)的理想状态下,理论上应该不会产生EMI问题,但是,目前实际上的布线设计还无法达到上述要求,所以只好将高速信号线尽量走在内层,其相邻的上层用地(铺铜)来覆盖以达到遮蔽隔离(Shielding)电磁幅射的效果,亦或在信号在线适当的距离加上对地的滤波电容(DeCapbypass to Ground)来降低EMI。
另外,针对日渐普遍的模拟及数字信号混合电路EMI防治,特提出以下几个可遵循的设计原则:
1. 模拟与数字信号须分区布线。
2. 所有模拟信号要在模拟区内布线(包含地,电源及信号线)。
3. 所有数字信号要在数字区内布线(包含地,电源及信号线)。
4. 严禁模拟或数字信号直接跨区布线。
5. AD IC芯片下方严禁布线。
四、了解各国法规及标准以通过测试
除了各种抑制技巧外,量测也是EMI防治过程中重要的一环。 EMI量测绝大部份是使用频谱分析仪(Spectrum Analyzer)及接收器(Receiver),而EMS因是产品抗干扰性测试,所以必须在符合国际法规的环境下执行测试,目前坊间有许多实验室均可执行EMS标准测试。
要通过测试,首先必须了解各国对于EMC的法规及相关标准要求。 目前全球较重要的EMC标准包括:台湾BSMI(CNS13438)、中国大陆CCC(GB4943)、日本VCCI、韩国MIC、美国FCC(Part 15)、欧盟CE(EN55022)、纽澳C-Tick(ANS3548)等等,EMS的要求标准则主要有韩国MIC(引用EN55024)和欧盟CE(EN55024)。
目前各国所引用的EMC和EMS测试项目则分别如下表一、二:
表一:各国EMC测试项目一览
表二:各国EMS测试项目一览
以最低成本符合国际规范将成最大挑战
虽然以一般消费性电子资通讯产品而言,并没有特定类型产品的EMI会特别严重,不过以学理及经验来看,交流供电产品的EMI问题会比直流供电产品严重,处理上也较为复杂;此外,多层板产品的EMI问题也会比层数少的产品较容易处理。
不过,对于电子厂商面临的最大EMC问题,不在于技术而在于成本。因为在激烈的市场竞争下,产品成本是各家厂商最优先考虑的重点,往往牺牲了技术上应有的设计考虑来迁就成本要求,例如原本以四层板设计可获致最佳EMI抑制效果,就可能因成本考虑而改用防治效果较差的两层板。
一般EMC防治成本约占产品总体材料成本的15%~10%,而这中间的空间就需要看设计者的经验来决定费用降低的幅度,所以如何在最低成本的艰困条件下,完成符合国际EMC规范的产品,将是未来电子厂商的研发或EMC工程师所面临的最大挑战与课题。
点击“阅读原文”,了解更多凌世信息!