淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


Nexxim Simulator >
Nexxim Component Models >
S-Parameter Elements >
   SP Frequency Dependent Data Model       

SP Frequency Dependent Data Model

The SP model provides frequency-dependent data in matrix form for S-element or W-element models. The SP model is implemented as the standard frequency response model described below.

Frequency Response Model

The SP frequency response model has the following netlist format.

.MODEL modelname SP [SPACING=LINEAR|NONUNIFORM]

[N=matrix_dimension] [VALTYPE=CARTESIAN|POLAR|DECIBEL|REAL]

[MATRIX=SYMMETRIC|HERMITIAN|NONSYMMETRIC]

FSTART=freq0 FSTOP=freqN

DATA=[num_freqs matrix_data] | DATAFILE=file_reference

Spacing between frequency points is linear or uniform, with a frequency increment of

(freq0 - freqN)/(num_freqs - 1)

All frequencies are specified in hertz.

The frequency response model specifies the frequency-dependent response of the element with a sequence of matrices, one for each frequency. Parameter N is the number of signals or ports, which determines the full dimension of each matrix, N ´ N. The default is N=1.

DATA Entry

The frequency-dependent data can be provided in a DATA entry that is part of the .MODEL statement, or in a separate file identified in a DATAFILE reference in the .MODEL statement. The use of a separate data file is discussed in the later section Data Files.

The structure of the DATA entry depends on the number of frequencies given by the num_freqs entry, the type of the data matrices as specified by the MATRIX parameter, and on the type of the data, real or complex. In the definitions that follow, we shall use the following algebraic conventions:

q = num_freqs, the number of frequencies.

hij(sk) = the response at port i due to the input at port j, at the kth frequency s,
where and

hijre = real part of hij, hijim = imaginary part of hij.

Spaces or commas may be used as the delimiters.

MATRIX=SYMMETRIC is the default. In a symmetric matrix, hij = hji for all i,j. The DATA points specify only the lower-triangular portion of each matrix, i.e., the portion of the matrix for which , where i is the row number and j is the column number.

The structure of the DATA entry for a linear symmetric matrix of real data is:

DATA=[ q

+ h11(s1)

+ ...

+ hN1(s1) ... hNN(s1)

...

+ h11(sq)

+ ...

+ hN1(sq) ... hNN(sq)

+ ]

For example, for a two-port system with symmetric linear real response over two frequencies, the .MODEL statement would have the structure:

.MODEL twop1 SP SPACING=LINEAR N=2 MATRIX=SYMMETRIC

FSTART=1.0e+3 FSTOP=2.0e+3

DATA=[ 2

+ h11(s1)

+ h21(s1) h22(s1)

+ h11(s2)

+ h21(s2) h22(s2)

+ ]

The structure of the DATA entry for a linear symmetric matrix of complex data is:

DATA=[ q

+ h11re(s1) h11im(s1)

+ ...

+ hN1re(s1) hN1im(s1) ... hNNre(s1) hNNre(s1)

...

+ h11re(sq) h11im(sq)

+ ...

+ hN1re(sq) hN1im(sq) ... hNNre(sq) hNNre(sq)

+ ]

For example, for a two-port system with symmetric linear complex response over two frequencies, the .MODEL statement would have the structure:

.MODEL twop2 SP SPACING=LINEAR N=2 MATRIX=SYMMETRIC

FSTART=1.0e+3 FSTOP=2.0e+3

DATA=[ 2

+ h11re(s1) h11im(s1)

+ h21re(s1) h21im(s1) h22re(s1) h22re(s1)

+ h11re(s2) h11im(s2)

+ h21re(s2) h21im(s2) h22re(s2) h22re(s2)

+ ]

MATRIX=HERMITIAN. In a hermitian matrix, the data is complex and hij = hji* for all i,j, where * denotes the complex conjugate. As with symmetric matrices, the DATA points for a hermitian matrix specify only the lower-triangular portion of each matrix, i.e., the portion of the matrix for which , where i is the row number and j is the column number. The DATA structure is the same as the one given above for the symmetric matrix of complex data.

MATRIX=NONSYMMETRIC. For nonsymmetric matrices, the DATA must specify the full matrix of real or complex data.

The structure of the DATA entry for a nonsymmetric matrix of real linear data is:

DATA=[ q

+ h11(s1) ... h1N(s1)

+ ...

+ hN1(s1) ... hNN(s1)

...

+ h11(sq) ... h1N(sq)

+ ...

+ hN1(sq) ... hNN(sq)

+ ]

For example, for a two-port system with nonsymmetric linear real response over two frequencies, the .MODEL statement would have the structure:

.MODEL twop3 SP SPACING=LINEAR N=2 MATRIX=NONSYMMETRIC

FSTART=1.0e+3 FSTOP=2.0e+3

DATA=[ 2

+ h11(s1) h12(s1)

+ h21(s1) h22(s1)

+ h11(s2) h12(s2)

+ h21(s2) h22(s2)

+ ]

The structure of the DATA entry for a nonsymmetric matrix of complex linear data is:

DATA=[ q

+ h11re(s1) h11im(s1) ... h1Nre(s1) h1Nim(s1)

+ ...

+ hN1re(s1) hN1im(s1) ... hNNre(s1) hNNre(s1)

...

+ h11re(sq) h11im(sq) ... h1Nre(sq) h1Nim(sq)

+ ...

+ hN1re(sq) hN1im(sq) ... hNNre(sq) hNNre(sq)

+ ]

For example, for a two-port system with nonsymmetric linear complex response over two frequencies, the .MODEL statement would have the structure:

.MODEL twop4 SP SPACING=LINEAR N=2 MATRIX=NONSYMMETRIC

FSTART=1.0e+3 FSTOP=2.0e+3

DATA=[ 2

+ h11re(s1) h11im(s1) h12re(s1) h12im(s1)

+ h21re(s1) h21im(s1) h22re(s1) h22re(s1)

+ h11re(s2) h11im(s2) h12re(s2) h12im(s2)

+ h21re(s2) h21im(s2) h22re(s2) h22re(s2)

+ ]

The structure of the DATA entry for a NONUNIFORM frequency distribution is:

DATA=[ q

+ f1 h11(s1) ... h1N(s1)

+ ...

+ hN1(s1) ... hNN(s1)

...

+ fq h11(sq) ... h1N(sq)

+ ...

+ hN1(sq) ... hNN(sq)

+ ]

For example, for a two-port system with nonuniform linear real response over two frequencies, the .MODEL statement would have the structure:

.MODEL twop3 SP SPACING=NONUNIFORM N=2 MATRIX=NONSYMMETRIC

DATA=[ 2

+ 1.0e+3 h11(s1) h12(s1) h21(s1) h22(s1)

+ 2.0e+3 h11(s2) h12(s2) h21(s2) h22(s2)

+ ]

Data Files

The frequency response model can reference a separate file containing the response data, instead of using data supplied in-line in the .MODEL statement. Instead of the DATA entry, the netlist syntax contains an entry of the form:

DATAFILE=file_reference

The file_reference identifies an external file containing the data. See File References for details.

The data file must contain only the numeric data, with entries separated by spaces, commas, tabs, or end-of-lines. No comments are allowed.

An example of a model statement using a data file reference is:

.MODEL fmod SP N=2 SPACING=LINEAR FSTART=0 FSTOP=40

+ MATRIX=NONSYMMETRIC

+ DATAFILE="c:\circuits\s_element.dat"

The corresponding data file, for a two-input S-parameter device over two frequency points (0.0 Hz and 40 Hz), in complex Cartesian form, would have data such as the following:

2,

0,0,1,0,1,0,0,0

0,0,2,0,2,0,0,0

This encodes the following data points:

f=0: h11=0.0+j0.0, h12=1.0+j0.0, h21=1.0+j0.0, h22=0.0+j0.0

f=40: h11=0.0+j0.0, h12=2.0+j0.0, h21=2.0+j0.0, h22=0.0+j0.0

Imported Data from Touchstone Files

In a schematic, an N-port element or other element that uses the S-model or W-model can directly import S-parameter data from a Touchstone file. Designer creates an SP model with the data. The Touchstone file can contain noise data. To import the data in the correct format, select the Noise Data tab on the N-Port Data dialog and make sure the Option field has the default setting:

Fmin Mag(Gopt) Ang(gopt) Rn

Here is an example Touchstone file:

!2-port S-parameter file with noise data

# GHZ S RI R 50.0

!freq ReS11 ImS11 ReS21 ImS21 ReS12 ImS12 ReS22 ImS22

1.000 0.393 -0.121 -0.001 -0.002 -0.001 -0.002 0.393 -0.121

2.000 0.352 -0.305 -0.010 -0.030 -0.010 -0.030 0.352 -0.305

10.000 0.342 -0.334 -0.013 -0.038 -0.013 -0.038 0.342 -0.334

!Noise Parameters (Nfreq Fmin MGopt PGopt Rnoise)

4 0.7 0.64 69 0.38

8 2.7 0.46 -33 0.40

Here is the .MODEL statement that Designer creates for this file (some trailing zeros have been deleted for brevity):

.model NportData SP N=2 SPACING=NONUNIFORM MATRIX=NONSYMMETRIC

+ INTERPOLATION=LINEAR INTDATTYP=RI HIGHPASS=10 LOWPASS=10 DATA=(

+3

+ 1.00E+009 3.93E-001 -1.21E-001 -1.00E-003 -2.00E-003

+ -1.00E-003 -2.00E-003 3.93E-001 -1.21E-001

+

+ 2.00E+009 3.52E-001 -3.05E-001 -1.00E-002 -3.00E-002

+ -1.00E-002 -3.00E-002 3.52E-001 -3.05E-001

+

+ 1.00E+010 3.42E-001 -3.34E-001 -1.30E-002 -3.80E-002

+ -1.30E-002 -3.80E-002 3.42E-001 -3.34E-001

+

+)

+ NOISE_FREQUENCY = (

+ 4.000000E+009 ,8.000000E+009 )

+ NOISE_FIGURE = (

+ 7.000000E-001 ,2.700000E+000 )

+ GAMMA_MAG = (

+ 6.400000E-001 ,4.600000E-001 )

+ GAMMA_ANG = (

+ 6.900000E+001 ,-3.300000E+001 )

+ NOISE_RESISTANCE = (

+ 3.800000E-001 ,4.000000E-001 )




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com