淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


Nexxim Simulator >
Nexxim Component Models >
S-Parameter Elements >
   S Frequency Dependent Data Model       

S Frequency Dependent Data Model

The S model provides frequency-dependent data in the TouchstoneÒ format. Touchstone is a registered trademark of Agilent Technologies. Refer to the Touchstone File Format Specification for information on this format.

The S model has the following netlist syntax.

.MODEL modelname S TSTONEFILE=”[pathname]filename

[INTERPOLATION=LINEAR|STEP] [INTDATTYP=MA|RI|DBA]

[HIGHPASS=val] [LOWPASS=val]

[CONVOLUTION=0|1|2] [RELTOL=val] [MOR=val] [MAX_STATES=val]

[CACHE_STATE_SPACE=val] [BY_ENTRY=val]

[G_TO_GND=val] [Q_LIMIT=val]

[DELAYHANDLE=0|1]

The file_reference specifies the directory and filename for the Touchstone file.

Note 

If the reference normalization impedance is not specified in the Touchstone file, 50 ohms is the default.

A W-element can be described by S-parameter data from a Touchstone file. Additional S-model parameters for W-elements are listed below. When Nexxim encounters one of these parameters in an S-Model definition, it looks in the circuit for the corresponding W-element. If the W-element is found, the S-model calculates the W model. If no W-element is found, these parameters are ignored.

XLINELENGTH=val

[ER=val]

[MAX_ER=val]

The XLINELENGTH parameter on the S-Model specifies a unit length (default 1 meter). Nexxim computes the equivalent RLGC or TABLE model for that unit length from the S-parameter data. The parameter L on the W-Element specifies the actual length of transmission line to simulate using the calculated model.

The parameter ER is the dielectric constant of the substrate for the W-element. If ER is not known, or if there are multiple substrates, use MAX_ER to provide an estimate that is greater than the probable maximum value. If both ER and MAX_ER are given, the larger of the two values is used. If neither parameter is supplied, a dielectric constant of 15 is used. An accurate RLGC or TABLE model will always be produced as long as no actual dielectric constant is larger than the one used in the calculation.

Note 

Parameters ER and MAX_ER are Nexxim-specific. The XLINELENGTH parameter is HSPICE-compatible.

 


S Model Parameters

Parameter

Description

Unit

Default

BY_ENTRY

Error tolerance method

0=absolute

1=relative

None

0

CACHE_STATE_SPACE

0= do not cache

1 = cache

None

1

CONVOLUTION

Transient analysis method

0: state space

1: convolution using PWL waveform

2: Convolution using reverse FFT

3: Convolution using linear interpolation of reverse FFT.

None

0

DELAYHANDLE

Transient analysis method

0: state space, 1: convolution

NOTE: DELAYHANDLE is supported as a model parameter for HSPICE compatibility only. Use the CONVOLUTION model parameter instead. DELAYHANDLE=1 is the same as CONVOLUTION=1.

When convolution=1, 2, or 3 is in effect (either by global option or by model parameter), any DELAYHANDLE=0 model parameters are ignored.

None

0

G-TO-GND

Conductance between all terminal nodes and ground

Siemens

0.0

INTERPOLATION

Interpolation method

LINEAR: Piecewise linear

STEP: Take value from the closest table entry that is lower in frequency

None

LINEAR

INTDATTYP

Complex data type for linear interpolation

MA: Magnitude-phase

RI: Real-imaginary

DBA: Decibel-phase

None

MA

HIGHPASS

Extrapolation method for points above the given frequency range

0: Forced to zero

1: Forced to highest frequency point in the table

2: Linear extrapolation

10: Hold the highest magnitude, linearly extrapolate the phase

None

10

LOWPASS

How a DC point is generated if none exists in the input data (always real)

0: Set to zero

1: Magnitude and sign equal to those of the lowest given point

2: Real part of linear extrapolation to DC

10: Magnitude equal to the lowest given point, phase linearly extrapolated and forced to be a multiple of pi

11: All signal lines open circuited (S-parameter matrix is identity matrix)

12: All signal lines shorted together

13: All signal lines shorted to ground (S-parameter matrix is negative identity matrix)

None

10

MAX_STATES

Maximum number of states per entry in the state space formulation

None

128

MOR

Model-order reduction

0=none

1=entire matrix

2=MOR of rows individually, plus final MOR for combination

3=MOR of rows individually, no final MOR

4=MOR of columns individually, plus final MOR for combination

5=MOR of columns individually, no final MOR

None

0

Q-LIMIT

Limit of quality factor of poles in rational fit

None

1e4


 


S Model Parameters for W-Elements

Parameter

Description

Unit

Default

XLINELENGTH

Unit length for computing RLGC or Table model for W element

Meter

1

ER

Exact dielectric constant.

None

None

MAX_ER

Maximum dielectric constant

None

15


S Model Netlist Examples

Here is an example of an S model netlist statement:

.MODEL S_2port S TSTONEFILE=”C:/fdata/tsdata.s2p”

Here is an example of a two-port S-parameter file with three frequency points, in real-imaginary format, adapted from the Touchstone File Format Specification:

!2-port S-parameter file, three frequency points

# GHZ S RI R 50.0

!freq ReS11 ImS11 ReS21 ImS21 ReS12 ImS12 ReS22 ImS22

1.000 0.393 -0.121 -0.001 -0.002 -0.001 -0.002 0.393 -0.121

2.000 0.352 -0.305 -0.010 -0.030 -0.010 -0.030 0.352 -0.305

10.000 0.342 -0.334 -0.013 -0.038 -0.013 -0.038 0.342 -0.334

Here is an example of a four-port S-parameter file with three frequency points, in magnitude-angle format, adapted from the Touchstone File Format Specification:

! 4-port S-parameter data, three frequency points

# GHZ S MA R 50

!freq MS11 AS11 MS12 AS12 MS13 AS13 MS14 AS14
! MS21 AS21 MS22 AS22 MS23 AS23 MS24 AS24
! MS31 AS31 MS32 AS32 MS33 AS33 MS34 AS34
! MS41 AS41 MS42 AS42 MS43 AS43 MS44 AS44

5.000 0.60 161.24 0.40 -42.20 0.42 -66.58 0.53 -79.34
0.40 -42.20 0.60 161.20 0.53 -79.34 0.42 -66.58
0.42 -66.58 0.53 -79.34 0.60 161.24 0.40 -42.20
0.53 -79.34 0.42 -66.58 0.53 -79.34 0.60 161.24

6.000 0.57 150.37 0.40 -44.34 0.41 -81.24 0.57 -95.77
0.40 -44.34 0.57 150.37 0.40 -44.34 0.41 -81.24
0.41 -81.24 0.57 -95.77 0.57 150.37 0.40 -44.34
0.57 -95.77 0.41 -81.24 0.57 -95.77 0.57 150.37

7.000 0.50 136.69 0.45 -46.41 0.37 -99.09 0.62 -114.19
0.45 -46.41 0.50 136.69 0.62 -114.19 0.37 -99.09
0.37 -99.09 0.62 -114.19 0.50 136.69 0.45 -46.41
0.62 -114.19 0.37 -99.09 0.45 -46.41 0.50 136.69

 




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com