紧急求教相关矩阵的分解
Yes, you can.
Please refer to the help file for sqrtm() in Matlab, then you will find the function sqrtm() acts as:
For a square matrix A with eigen-decomposition A=V*D*inv(V) where D=diag{a_1,...,a_n} with a_1,...,a_n being the eigenvalues, the function sqrtm() returns B:=sqrtm(A)=V*diag{sqrt(a_1),...,sqrt(a_n)}*inv(V), so that B^2=A.
For a PSD matrix R, it has the eigen-decomposition as R=U'*D*U, where U is unitary (U'*U=I) and the eigenvalues a_1,...,a_n>=0. Then R1:=sqrt(R)=U'*diag{sqrt(a_1),...,sqrt(a_n)}*U which is also PSD (so that Hermitian) with R1'=R1. Then R1*R1'=R1^2=R.
Note that given a PSD matrix R, the solution for R1*R1'=R may not be unique. Neither is for R1^2=R. However, for a PSD R with R1^2=R and R1 also PSD, the solution R1 is unique. And sqrtm(R) will return this unique solution.
相关文章:
- SPW仿真问题紧急求救,大牛们,帮帮忙吧!(05-08)
- 紧急请教一下,谢谢(05-08)
- 紧急事件:请热心的GGJJ帮忙:北京什么和电子有关的所比较好?(05-08)
- 关于OFDM和同步问题 紧急求救(05-08)
- 地震灾情紧急通知 (05-08)
- 紧急寻联合注册(05-08)