官方淘宝店 易迪拓培训 旧站入口
首页 > 微波射频 > 射频工程师交流 > Schneider博士的FDTD示例 C程序

Schneider博士的FDTD示例 C程序

12-07
/*
* John B. Schneider
* schneidj@eecs.wsu.edu
*
* Copyright (C) 2003  John B. Schneider
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation (FSF) version 2
* of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
* GNU General Public License for more details.
*
* The license under which this software is publish is available from
* www.fsf.org/copyleft/gpl.html or www.fsf.org/copyleft/gpl.txt.
*
* This code was provided as the solution to a homework problem I
* assigned in EE 417/517 at Washington State University in the Spring
* of 2003.  The goal was to write a program which would duplicate, at
* least to a large extend, the patch antenna work described by Sheen
* et al., IEEE Trans. MTT, 38(7):849--857, 1990.  HOWEVER, unlike
* Sheen et al., a uniform spatial step is used, thus the geometry
* modeled by this program is not identical to the geometry described
* by Sheen et al. (but it is close).  Modifying the code to realize a
* non-uniform grid should not be difficult (and is left as an
* exercise for the reader).  Furthermore, a second-order Higdon
* absorbing boundary conditions is used on four of the boundaries of
* the computational domain while a first-order one is used on the
* source-plane wall.  (Sheen et al. used a first-order ABC on all of
* the five planes.)  This code has in place the arrays to use a
* second-order ABC on the source-plane, but the actual ABC update
* equations are only first-order since they were found to cause fewer
* artifacts when switching between having the source-wall generate
* fields and absorb fields.
*
* This code can be used to model a microstrip line or a microstrip
* patch antenna (the particular problem being modeled is determined
* at compile-time via various declarations).  To compile this program
* to model a patch antenna and have each of the ABC turned on at each
* face, use a command such as this:
*
*  cc -DPATCH -DABC1 -DABC2 -DABC3 -DABC4 -DABC5 -O sheen_patch.c -o sheen_pa
tch -lm
*
* The switchs control things as follows:
*
*   PATCH: If present, the patch is modeled, otherwise a microstrip which
*          spans the computational domain.
*   ABC1:  ABC at the left wall, x=0.
*   ABC2:  ABC at the far wall, y=LIMY-1.
*   ABC3:  ABC at the right wall, x=LIMX-1.
*   ABC4:  ABC at the near wall, y=0.
*   ABC5:  ABC at the top wall, z=LIMZ-1.
*
* These switches are rather cumbersome but the 417 students in the
* class (i.e., the undergraduates) didn't have to implement ABC's and
* the switches allowed me to use one program for both solutions
* without having to deal with a bunch of if statements.  Note that
* the 417 students had to take a "snapshot" of the field at time step
* 300 but I have removed that portion of the code.
*
* Some of the parameters of this code are:
*    - Courant number of 1/sqrt(3.1)
*    - Computational domain size: 90 x 130 x 20 cells (in x, y, and z
*      directions, respectively)
*    - del_x = del_y = del_z = 0.265 mm
*    - Source plane at y=0
*    - Ground plane at z=0
*    - Duroid substrate with relative permittivity 2.2.  Electric
*      field nodes on interface between duroid and freespace use
*      average permittivity of media to either side.
*    - Substrate 3 cells thick
*    - Microstrip 9 cells wide
*    - Patch dimensions 47 x 60 cells
*
* As written, this program program runs for 8192 time step and writes
* a single file called "obs-point".  If you want the absolute value
* of the S11 parameter for the patch, you will have to run this
* program twice: once with the microstrip and once with patch.  
* So, on my Linux system I would issue the following commands:
*
*  % cc -DABC1 -DABC2 -DABC3 -DABC4 -DABC5 -O sheen_patch.c -o sheen_patch -l
m
*  % sheen_patch
*  % mv obs-point obs-point-strip
*  % cc -DPATCH -DABC1 -DABC2 -DABC3 -DABC4 -DABC5 -O sheen_patch.c -o sheen_
patch -lm
*  % sheen_patch
*  % mv obs-point obs-point-patch
*
* Now you can obtain |S11| by subtracting obs-point-strip from
* obs-point-patch to obtain the reflected field.  Take the Fourier
* transform of the incident field (i.e., obs-point-strip) and
* incident field, divide on a term by term basis, and plot the
* magnitude of the result.  In matlab you would do this with commands
* such as (this can be snipped out and saved to a separate file and
* fed to matlab):
%--------------------------------------------------------------------------
% These matlab commands can be used to plot the results for the
% Sheen et. simulation.
%
% Note that this assumes a uniform spatial step size of del_s of
% 0.265 mm, a Courant number of 1/sqrt(3.1), and 8192.
% Using those numbers we can find the temporal step size.
%
%   c del_t/del_s = 1/sqrt(3.1)   => del_t = del_s/(c sqrt(3.1))
%                                          = 5.016996 10^-13
%
% Thus the highest frequency in the simulation is
%
%   f_max = 1/(2 del_t) = 9.9661227 10^11
%
% Given that there are 8192 time-steps in the simulation, the spectral
% resolution is
%
%   del_f = f_max/(number_of_time_steps / 2) = 243 313 543.8 Hz
%
% Thus del_f is 0.2433 GHz and since we'll plot the spectrum in GHz,
% this is the how we'll scale the horizontal axis for the results from
% the FFT.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
inc=dlmread('obs-point-strip','\n');  % "incident" field
tot=dlmread('obs-point-patch','\n');  % total field
% reflected field is the difference of total and incident field
ref=tot-inc;                          
% Take FFT of incident and relected fields.  S11 transfer function
% is just reflected divided by incident field.  Note that this is
% only meaningful at frequencies where we have sufficient incident
% energy to excite the system, but this should be fine over the range
% of frequencies considered here.
incF=fft(inc);                        
refF=fft(ref);
freq=0.24331*(0:100);
semilogy(freq(5:80),abs(refF(5:80) ./ incF(5:80)))
title('S11 for patch antenna')
xlabel('Frequency, GHz')
ylabel('|S11|')
%--------------------------------------------------------------------------
* Note that the size of the computational domain is larger than that
* used by Sheen et al., so you may have to be patient while this runs
* (or resize things to suit your needs).
*
* Enjoy!
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
/* Size of the computational domain. */
#define LIMX  90
#define LIMY  130
#define LIMZ  20
#define HEIGHT 3  /* Number of cells for the dielectric substrate. */
/* Various start and stop point for the feed line and patch. */
#define LINE_X_START 28
#define LINE_X_END 37
#define PATCH_X_START 20
#define PATCH_X_END 67
#define PATCH_Y_START 50
#define PATCH_Y_END 110
/* Parameter to control the width of the Gaussian pulse, which is
   rather arbitrary.  We just need to ensure we have sufficient
   spectral energy at the frequencies of interest.  */
#define PPW 30
/* The time at which the source plane switches to being a regular
   (absorbing) wall. */
#define SWITCH_SRC 225
#ifndef M_PI
#define M_PI  3.14159265358979323846
#endif
double gaussian(int, double, int);
void init(void);
/* Field arrays */
double ex[LIMX][LIMY][LIMZ], ey[LIMX][LIMY][LIMZ],
       ez[LIMX][LIMY][LIMZ], hx[LIMX][LIMY][LIMZ],
       hy[LIMX][LIMY][LIMZ], hz[LIMX][LIMY][LIMZ];
/* I don't like repeated brackets so define some macros to make things
   neater. */
#define Ex(I,J,K) ex[I][J][K]
#define Ey(I,J,K) ey[I][J][K]
#define Ez(I,J,K) ez[I][J][K]
#define Hx(I,J,K) hx[I][J][K]
#define Hy(I,J,K) hy[I][J][K]
#define Hz(I,J,K) hz[I][J][K]
/* ABC arrays -- a second-oder Higdon ABC is used at most faces. */
double exfar[LIMX][3][LIMZ][2], ezfar[LIMX][3][LIMZ][2];
#define Exfar(I,J,K,N) exfar[I][J-(LIMY-3)][K][N]
#define Ezfar(I,J,K,N) ezfar[I][J-(LIMY-3)][K][N]
double extop[LIMX][LIMY][3][2], eytop[LIMX][LIMY][3][2];
#define Extop(I,J,K,N) extop[I][J][K-(LIMZ-3)][N]
#define Eytop(I,J,K,N) eytop[I][J][K-(LIMZ-3)][N]
double exnear[LIMX][3][LIMZ][2], eznear[LIMX][3][LIMZ][2];
#define Exnear(I,J,K,N) exnear[I][J][K][N]
#define Eznear(I,J,K,N) eznear[I][J][K][N]
double eyleft[3][LIMY][LIMZ][2], ezleft[3][LIMY][LIMZ][2];
#define Eyleft(I,J,K,N) eyleft[I][J][K][N]
#define Ezleft(I,J,K,N) ezleft[I][J][K][N]
double eyright[3][LIMY][LIMZ][2], ezright[3][LIMY][LIMZ][2];
#define Eyright(I,J,K,N) eyright[I-(LIMX-3)][J][K][N]
#define Ezright(I,J,K,N) ezright[I-(LIMX-3)][J][K][N]
int main() {
  double mu0, clight, eps0;
  double coefH, coefE0, coefE1, coefE01, holdez, cdtds;
  int i, j, k, ii, jj, kk, ntime, ntmax=8192;
  /* ABC parameters. */
  double c10, c20, c30, c40, c101, c201, c301, c401, c11, c21, c31, c41, temp;
  /* output file */
  FILE *obs;
  obs=fopen("obs-point","w");
  mu0=M_PI*4.e-7;
  clight=2.99792458e8;
  eps0=1.0/(mu0*clight*clight);
  /* Run simulation close to Courant limit. */
  cdtds   = 1./sqrt(3.1);
  coefH   = cdtds/clight/mu0;
  coefE0  = cdtds/clight/eps0;
  coefE1  = coefE0/2.2;
  coefE01 = coefE0/((1.0+2.2)/2.0);
  /* ABC coefficients. */
  temp = cdtds;
  c10 =    -(1.0/temp - 2.0 + temp)/(1.0/temp + 2.0 + temp);
  c20 = 2.0*(1.0/temp - temp)/(1.0/temp + 2.0 + temp);
  c30 = 4.0*(1.0/temp + temp)/(1.0/temp + 2.0 + temp);
  c40 = (temp-1.0)/(temp+1.0);
  temp = cdtds/sqrt((1.0 + 2.2)/2.0);
  c101 =    -(1.0/temp - 2.0 + temp)/(1.0/temp + 2.0 + temp);
  c201 = 2.0*(1.0/temp - temp)/(1.0/temp + 2.0 + temp);
  c301 = 4.0*(1.0/temp + temp)/(1.0/temp + 2.0 + temp);
  c401 = (temp-1.0)/(temp+1.0);
  temp = cdtds/sqrt(2.2);
  c11 =    -(1.0/temp - 2.0 + temp)/(1.0/temp + 2.0 + temp);
  c21 = 2.0*(1.0/temp - temp)/(1.0/temp + 2.0 + temp);
  c31 = 4.0*(1.0/temp + temp)/(1.0/temp + 2.0 + temp);
  c41 = (temp-1.0)/(temp+1.0);
  /* Initialize all the fields to zero. */
  init();
  for (ntime=0; ntime<ntmax; ntime++) {
    printf("Working on time step %d ...\n",ntime);
    /********** Ex update. *************/
    for (i=0; i<LIMX-1; i++)
      for (j=1; j<LIMY-1; j++)
    for (k=1; k<LIMZ-1; k++)
      if (k > HEIGHT)
        Ex(i,j,k) = Ex(i,j,k) +
          coefE0*((Hz(i,j,k)-Hz(i,j-1,k)) - (Hy(i,j,k)-Hy(i,j,k-1)));
      else if (k == HEIGHT)
        Ex(i,j,k) = Ex(i,j,k) +
          coefE01*((Hz(i,j,k)-Hz(i,j-1,k)) - (Hy(i,j,k)-Hy(i,j,k-1)));
      else
        Ex(i,j,k) = Ex(i,j,k) +
          coefE1*((Hz(i,j,k)-Hz(i,j-1,k)) - (Hy(i,j,k)-Hy(i,j,k-1)));
#ifdef ABC4
    if (ntime<SWITCH_SRC) {
#endif
    /* Ex nodes on y=0 PMC wall have special updates. */
    j=0;
    for (i=0;i<LIMX-1;i++)
      for (k=1;k<LIMZ-1;k++)
    if (k > HEIGHT)
      Ex(i,j,k) = Ex(i,j,k) +
        coefE0*(2.0*Hz(i,j,k) - (Hy(i,j,k)-Hy(i,j,k-1)));
    else if (k == HEIGHT)
      Ex(i,j,k) = Ex(i,j,k) +
        coefE01*(2.0*Hz(i,j,k) - (Hy(i,j,k)-Hy(i,j,k-1)));
    else
      Ex(i,j,k) = Ex(i,j,k) +
        coefE1*(2.0*Hz(i,j,k) - (Hy(i,j,k)-Hy(i,j,k-1)));
#ifdef ABC4
    }
#endif
#ifdef PATCH
    /* Zero Ex on metal. */
    k=HEIGHT;
    /* First the feed strip. */
    for (i=LINE_X_START; i<LINE_X_END; i++)
      for (j=0; j<LIMY/2-10; j++)
    Ex(i,j,k) = 0.0;
    /* Next the patch. */
    for (i=PATCH_X_START; i<PATCH_X_END; i++)
      for (j=PATCH_Y_START; j<=PATCH_Y_END; j++)
    Ex(i,j,k) = 0.0;
#else
    /* Zero Ex on metal microstrip. */
    k=HEIGHT;
    for (i=LINE_X_START; i<LINE_X_END; i++)
      for (j=0; j<LIMY; j++)
    Ex(i,j,k) = 0.0;
#endif
#ifdef ABC2
    /* ABC at far wall */
    /* Ex above substrate */
    for (i=0; i<LIMX-1; i++) {
      j=LIMY-1;
      for (k=HEIGHT+1; k<LIMZ-1; k++) {
    Ex(i,j,k) = c10*(Ex(i,j-2,k)+Exfar(i,j,k,1))
      + c20*(Exfar(i,j,k,0) + Exfar(i,j-2,k,0) - Ex(i,j-1,k)
          - Exfar(i,j-1,k,1))  + c30*Exfar(i,j-1,k,0) - Exfar(i,j-2,k,1);
      
    for(jj=LIMY-3; jj<LIMY; jj++) {
      Exfar(i,jj,k,1) = Exfar(i,jj,k,0);
      Exfar(i,jj,k,0) = Ex(i,jj,k);
    }
      }
    }
    /* Ex at substrate */
    for (i=0; i<LIMX-1; i++) {
      j=LIMY-1;
      k=HEIGHT;
      Ex(i,j,k) = c101*(Ex(i,j-2,k)+Exfar(i,j,k,1))
    + c201*(Exfar(i,j,k,0) + Exfar(i,j-2,k,0) - Ex(i,j-1,k)
        - Exfar(i,j-1,k,1))  + c301*Exfar(i,j-1,k,0) - Exfar(i,j-2,k,1);
      
      for(jj=LIMY-3; jj<LIMY; jj++) {
    Exfar(i,jj,k,1) = Exfar(i,jj,k,0);
    Exfar(i,jj,k,0) = Ex(i,jj,k);
      }
    }
    /* Ex below substrate */
    for (i=0; i<LIMX-1; i++) {
      j=LIMY-1;
      for (k=1; k<HEIGHT; k++) {
    Ex(i,j,k) = c11*(Ex(i,j-2,k)+Exfar(i,j,k,1))
      + c21*(Exfar(i,j,k,0) + Exfar(i,j-2,k,0) - Ex(i,j-1,k)
          - Exfar(i,j-1,k,1))  + c31*Exfar(i,j-1,k,0) - Exfar(i,j-2,k,1);
      
    for(jj=LIMY-3; jj<LIMY; jj++) {
      Exfar(i,jj,k,1) = Exfar(i,jj,k,0);
      Exfar(i,jj,k,0) = Ex(i,jj,k);
    }
      }
    }
#endif
#ifdef ABC4
    /* ABC at near wall -- only apply ABC after source introduced */
    if (ntime >= SWITCH_SRC) {
      /* Ex above substrate */
      for (i=0; i<LIMX-1; i++) {
    j=0;
    for (k=HEIGHT+1; k<LIMZ-1; k++) {
      Ex(i,j,k) = Exnear(i,j+1,k,0) + c40*(Ex(i,j+1,k)-Ex(i,j,k));
      /* Ex(i,j,k) = c10*(Ex(i,j+2,k)+Exnear(i,j,k,1))
        + c20*(Exnear(i,j,k,0) + Exnear(i,j+2,k,0) - Ex(i,j+1,k)
          - Exnear(i,j+1,k,1)) + c30*Exnear(i,j+1,k,0) - Exnear(i,j+2,k,1);
      */
      for(jj=2; jj>=0; jj--) {
        Exnear(i,jj,k,1) = Exnear(i,jj,k,0);
        Exnear(i,jj,k,0) = Ex(i,jj,k);
      }
    }
      }
      /* Ex at substrate */
      for (i=0; i<LIMX-1; i++) {
    j=0;
    k=HEIGHT;
    Ex(i,j,k) = Exnear(i,j+1,k,0) + c401*(Ex(i,j+1,k)-Ex(i,j,k));
    /* Ex(i,j,k) = c101*(Ex(i,j+2,k)+Exnear(i,j,k,1))
      + c201*(Exnear(i,j,k,0) + Exnear(i,j+2,k,0) - Ex(i,j+1,k)
      - Exnear(i,j+1,k,1)) + c301*Exnear(i,j+1,k,0) - Exnear(i,j+2,k,1);
    */
    for(jj=2; jj>=0; jj--) {
      Exnear(i,jj,k,1) = Exnear(i,jj,k,0);
      Exnear(i,jj,k,0) = Ex(i,jj,k);
    }
      }
      /* Ex below substrate */
      for (i=0; i<LIMX-1; i++) {
    j=0;
    for (k=1; k<HEIGHT; k++) {
      Ex(i,j,k) = Exnear(i,j+1,k,0) + c41*(Ex(i,j+1,k)-Ex(i,j,k));
      /* Ex(i,j,k) = c11*(Ex(i,j+2,k)+Exnear(i,j,k,1))
        + c21*(Exnear(i,j,k,0) + Exnear(i,j+2,k,0) - Ex(i,j+1,k)
        - Exnear(i,j+1,k,1)) + c31*Exnear(i,j+1,k,0) - Exnear(i,j+2,k,1);
      */
      for(jj=2; jj>=0; jj--) {
        Exnear(i,jj,k,1) = Exnear(i,jj,k,0);
        Exnear(i,jj,k,0) = Ex(i,jj,k);
      }
    }
      }
    }
#endif
#ifdef ABC5
    /* ABC at top */
    for (i=0; i<LIMX-1; i++)
      for (j=0; j<LIMY; j++) {
    k=LIMZ-1;
    Ex(i,j,k) = c10*(Ex(i,j,k-2)+Extop(i,j,k,1))
      + c20*(Extop(i,j,k,0) + Extop(i,j,k-2,0) - Ex(i,j,k-1)
          - Extop(i,j,k-1,1))  + c30*Extop(i,j,k-1,0) - Extop(i,j,k-2,1);
      
    for(kk=LIMZ-3; kk<LIMZ; kk++) {
      Extop(i,j,kk,1) = Extop(i,j,kk,0);
      Extop(i,j,kk,0) = Ex(i,j,kk);
    }
    }
#endif
    /*********** Ey update. ***********/
    for (i=1; i<LIMX-1; i++)
      for (j=0; j<LIMY-1; j++)
    for (k=1; k<LIMZ-1; k++)
      if (k > HEIGHT)
        Ey(i,j,k) = Ey(i,j,k) +
          coefE0*((Hx(i,j,k)-Hx(i,j,k-1)) - (Hz(i,j,k)-Hz(i-1,j,k)));
      else if (k == HEIGHT)
        Ey(i,j,k) = Ey(i,j,k) +
          coefE01*((Hx(i,j,k)-Hx(i,j,k-1)) - (Hz(i,j,k)-Hz(i-1,j,k)));
      else
        Ey(i,j,k) = Ey(i,j,k) +
          coefE1*((Hx(i,j,k)-Hx(i,j,k-1)) - (Hz(i,j,k)-Hz(i-1,j,k)));
    
#ifdef PATCH
    /* Zero Ey on metal. */
    k=HEIGHT;
    /* First the feed strip. */
    for (i=LINE_X_START; i<=LINE_X_END; i++)
      for (j=0; j<LIMY/2-10; j++)
    Ey(i,j,k) = 0.0;
    /* Next the patch. */
    for (i=PATCH_X_START; i<=PATCH_X_END; i++)
      for (j=PATCH_Y_START; j<PATCH_Y_END; j++)
    Ey(i,j,k) = 0.0;
#else
    /* Zero Ey on metal microstrip. */
    k=HEIGHT;
    for (i=LINE_X_START; i<=LINE_X_END; i++)
      for (j=0; j<LIMY; j++)
    Ey(i,j,k) = 0.0;
#endif
#ifdef ABC1
    /* ABC on left wall */
    /* Ey above substrate */
    i = 0;
    for (j=0; j<LIMY-1; j++) {
      for (k=HEIGHT+1; k<LIMZ; k++) {
    Ey(i,j,k) = c10*(Ey(i+2,j,k)+Eyleft(i,j,k,1))
      + c20*(Eyleft(i,j,k,0) + Eyleft(i+2,j,k,0) - Ey(i+1,j,k)
          - Eyleft(i+1,j,k,1))  + c30*Eyleft(i+1,j,k,0) - Eyleft(i+2,j,k,1);
      
    for(ii=0; ii<3; ii++) {
      Eyleft(ii,j,k,1) = Eyleft(ii,j,k,0);
      Eyleft(ii,j,k,0) = Ey(ii,j,k);
    }
      }
    }
    /* Ey at substrate */
    i=0;
    for (j=0; j<LIMY-1; j++) {
      k=HEIGHT;
      Ey(i,j,k) = c101*(Ey(i+2,j,k)+Eyleft(i,j,k,1))
    + c201*(Eyleft(i,j,k,0) + Eyleft(i+2,j,k,0) - Ey(i+1,j,k)
        - Eyleft(i+1,j,k,1))  + c301*Eyleft(i+1,j,k,0) - Eyleft(i+2,j,k,1);
      
      for(ii=0; ii<3; ii++) {
    Eyleft(ii,j,k,1) = Eyleft(ii,j,k,0);
    Eyleft(ii,j,k,0) = Ey(ii,j,k);
      }
    }
    /* Ey below substrate */
    i=0;
    for (j=0; j<LIMY-1; j++) {
      for (k=1; k<HEIGHT; k++) {
    Ey(i,j,k) = c11*(Ey(i+2,j,k)+Eyleft(i,j,k,1))
      + c21*(Eyleft(i,j,k,0) + Eyleft(i+2,j,k,0) - Ey(i+1,j,k)
          - Eyleft(i+1,j,k,1))  + c31*Eyleft(i+1,j,k,0) - Eyleft(i+2,j,k,1);
      
    for(ii=0; ii<3; ii++) {
      Eyleft(ii,j,k,1) = Eyleft(ii,j,k,0);
      Eyleft(ii,j,k,0) = Ey(ii,j,k);
    }
      }
    }
#endif
#ifdef ABC3
    /* ABC on right wall */
    /* Ey above substrate */
    i = LIMX-1;
    for (j=0; j<LIMY-1; j++) {
      for (k=HEIGHT+1; k<LIMZ; k++) {
    Ey(i,j,k) = c10*(Ey(i-2,j,k)+Eyright(i,j,k,1))
      + c20*(Eyright(i,j,k,0) + Eyright(i-2,j,k,0) - Ey(i-1,j,k)
          - Eyright(i-1,j,k,1))  + c30*Eyright(i-1,j,k,0) - Eyright(i-2,j,k,1)
;
      
    for(ii=LIMX-3; ii<LIMX; ii++) {
      Eyright(ii,j,k,1) = Eyright(ii,j,k,0);
      Eyright(ii,j,k,0) = Ey(ii,j,k);
    }
      }
    }
    /* Ey at substrate */
    i=LIMX-1;
    for (j=0; j<LIMY-1; j++) {
      k=HEIGHT;
      Ey(i,j,k) = c101*(Ey(i-2,j,k)+Eyright(i,j,k,1))
    + c201*(Eyright(i,j,k,0) + Eyright(i-2,j,k,0) - Ey(i-1,j,k)
        - Eyright(i-1,j,k,1))  + c301*Eyright(i-1,j,k,0) - Eyright(i-2,j,k,1);
      
      for(ii=LIMX-3; ii<LIMX; ii++) {
    Eyright(ii,j,k,1) = Eyright(ii,j,k,0);
    Eyright(ii,j,k,0) = Ey(ii,j,k);
      }
    }
    /* Ey below substrate */
    i=LIMX-1;
    for (j=0; j<LIMY-1; j++) {
      for (k=1; k<HEIGHT; k++) {
    Ey(i,j,k) = c11*(Ey(i-2,j,k)+Eyright(i,j,k,1))
      + c21*(Eyright(i,j,k,0) + Eyright(i-2,j,k,0) - Ey(i-1,j,k)
          - Eyright(i-1,j,k,1))  + c31*Eyright(i-1,j,k,0) - Eyright(i-2,j,k,1)
;
      
    for(ii=LIMX-3; ii<LIMX; ii++) {
      Eyright(ii,j,k,1) = Eyright(ii,j,k,0);
      Eyright(ii,j,k,0) = Ey(ii,j,k);
    }
      }
    }
#endif
#ifdef ABC5
    /* ABC at top */
    for (i=0; i<LIMX; i++)
      for (j=0; j<LIMY-1; j++) {
    k=LIMZ-1;
    Ey(i,j,k) = c10*(Ey(i,j,k-2)+Eytop(i,j,k,1))
      + c20*(Eytop(i,j,k,0) + Eytop(i,j,k-2,0) - Ey(i,j,k-1)
          - Eytop(i,j,k-1,1))  + c30*Eytop(i,j,k-1,0) - Eytop(i,j,k-2,1);
      
    for(kk=LIMZ-3; kk<LIMZ; kk++) {
      Eytop(i,j,kk,1) = Eytop(i,j,kk,0);
      Eytop(i,j,kk,0) = Ey(i,j,kk);
    }
      }
#endif
    /************ Ez update. *************/
    for (i=1; i<LIMX-1; i++)
      for (j=1; j<LIMY-1; j++)
    for (k=0; k<LIMZ-1; k++)
      if (k > HEIGHT)
        Ez(i,j,k) = Ez(i,j,k)
          + coefE0*((Hy(i,j,k)-Hy(i-1,j,k)) - (Hx(i,j,k)-Hx(i,j-1,k)));
      else
        Ez(i,j,k) = Ez(i,j,k)
          + coefE1*((Hy(i,j,k)-Hy(i-1,j,k))    - (Hx(i,j,k)-Hx(i,j-1,k)));
    
#ifdef ABC4
    if (ntime<SWITCH_SRC) {
#endif
    /* Ez update on "near" wall. */
    j = 0;
    for (i=1; i<LIMX; i++)
      for (k=0; k<LIMZ; k++)
    if (k > HEIGHT)
      Ez(i,j,k) = Ez(i,j,k)
        + coefE0*((Hy(i,j,k)-Hy(i-1,j,k)) - 2.0*Hx(i,j,k));
    else
      Ez(i,j,k) = Ez(i,j,k)
        + coefE1*((Hy(i,j,k)-Hy(i-1,j,k)) - 2.0*Hx(i,j,k));
    
    /* source at y=0 wall of computational domain */
    holdez = gaussian(ntime, cdtds,  PPW)/3.0;
    j=0;
    for (i=LINE_X_START; i<=LINE_X_END; i++)
      for (k=0; k<HEIGHT; k++)
    Ez(i,j,k) = holdez;
    /* Ez(i,j,k) = Ez(i,j,k) + holdez; */
#ifdef ABC4
    }
#endif
#ifdef ABC1
    /* ABC on left wall */
    /* Ez above substrate */
    i = 0;
    for (j=0; j<LIMY-1; j++) {
      for (k=HEIGHT; k<LIMZ; k++) {
    Ez(i,j,k) = c10*(Ez(i+2,j,k)+Ezleft(i,j,k,1))
      + c20*(Ezleft(i,j,k,0) + Ezleft(i+2,j,k,0) - Ez(i+1,j,k)
          - Ezleft(i+1,j,k,1))  + c30*Ezleft(i+1,j,k,0) - Ezleft(i+2,j,k,1);
      
      for(ii=0; ii<3; ii++) {
      Ezleft(ii,j,k,1) = Ezleft(ii,j,k,0);
      Ezleft(ii,j,k,0) = Ez(ii,j,k);
    }
      }
    }
    /* Ez below substrate */
    i=0;
    for (j=0; j<LIMY-1; j++) {
      for (k=0; k<HEIGHT; k++) {
    Ez(i,j,k) = c11*(Ez(i+2,j,k)+Ezleft(i,j,k,1))
      + c21*(Ezleft(i,j,k,0) + Ezleft(i+2,j,k,0) - Ez(i+1,j,k)
          - Ezleft(i+1,j,k,1))  + c31*Ezleft(i+1,j,k,0) - Ezleft(i+2,j,k,1);
      
    for(ii=0; ii<3; ii++) {
      Ezleft(ii,j,k,1) = Ezleft(ii,j,k,0);
      Ezleft(ii,j,k,0) = Ez(ii,j,k);
    }
      }
    }
#endif
#ifdef ABC2
    /* ABC at far wall */
    /* Ez above substrate */
    for (i=0; i<LIMX-1; i++) {
      j=LIMY-1;
      for (k=HEIGHT; k<LIMZ; k++) {
    Ez(i,j,k) = c10*(Ez(i,j-2,k)+Ezfar(i,j,k,1))
      + c20*(Ezfar(i,j,k,0) + Ezfar(i,j-2,k,0) - Ez(i,j-1,k)
          - Ezfar(i,j-1,k,1))  + c30*Ezfar(i,j-1,k,0) - Ezfar(i,j-2,k,1);
      
    for(jj=LIMY-3; jj<LIMY; jj++) {
      Ezfar(i,jj,k,1) = Ezfar(i,jj,k,0);
      Ezfar(i,jj,k,0) = Ez(i,jj,k);
    }
      }
    }
    /* Ez below substrate */
    for (i=0; i<LIMX-1; i++) {
      j=LIMY-1;
      for (k=0; k<HEIGHT; k++) {
    Ez(i,j,k) = c11*(Ez(i,j-2,k)+Ezfar(i,j,k,1))
      + c21*(Ezfar(i,j,k,0) + Ezfar(i,j-2,k,0) - Ez(i,j-1,k)
          - Ezfar(i,j-1,k,1))  + c31*Ezfar(i,j-1,k,0) - Ezfar(i,j-2,k,1);
      
    for(jj=LIMY-3; jj<LIMY; jj++) {
      Ezfar(i,jj,k,1) = Ezfar(i,jj,k,0);
      Ezfar(i,jj,k,0) = Ez(i,jj,k);
    }
      }
    }
#endif
#ifdef ABC4
    /* ABC at near wall -- only apply after source introduced */
    if (ntime >= SWITCH_SRC) {
      /* Ez above substrate */
      for (i=0; i<LIMX-1; i++) {
    j=0;
    for (k=HEIGHT; k<LIMZ; k++) {
      Ez(i,j,k) = Eznear(i,j+1,k,0) + c40*(Ez(i,j+1,k) - Ez(i,j,k));
      /* Ez(i,j,k) = c10*(Ez(i,j+2,k)+Eznear(i,j,k,1))
        + c20*(Eznear(i,j,k,0) + Eznear(i,j+2,k,0) - Ez(i,j+1,k)
        - Eznear(i,j+1,k,1))  + c30*Eznear(i,j+1,k,0) - Eznear(i,j+2,k,1);
      */
      for(jj=2; jj>=0; jj--) {
        Eznear(i,jj,k,1) = Eznear(i,jj,k,0);
        Eznear(i,jj,k,0) = Ez(i,jj,k);
      }
    }
      }
      /* Ez below substrate */
      for (i=0; i<LIMX-1; i++) {
    j=0;
    for (k=0; k<HEIGHT; k++) {
      Ez(i,j,k) = Eznear(i,j+1,k,0) + c41*(Ez(i,j+1,k) - Ez(i,j,k));
      /*
      Ez(i,j,k) = c11*(Ez(i,j+2,k)+Eznear(i,j,k,1))
        + c21*(Eznear(i,j,k,0) + Eznear(i,j+2,k,0) - Ez(i,j+1,k)
        - Eznear(i,j+1,k,1))  + c31*Eznear(i,j+1,k,0) - Eznear(i,j+2,k,1);
      */
      for(jj=2; jj>=0; jj--) {
        Eznear(i,jj,k,1) = Eznear(i,jj,k,0);
        Eznear(i,jj,k,0) = Ez(i,jj,k);
      }
    }
      }
    }
#endif
#ifdef ABC3
    /* ABC on right wall */
    /* Ez above substrate */
    i = LIMX-1;
    for (j=0; j<LIMY-1; j++) {
      for (k=HEIGHT; k<LIMZ; k++) {
    Ez(i,j,k) = c10*(Ez(i-2,j,k)+Ezright(i,j,k,1))
      + c20*(Ezright(i,j,k,0) + Ezright(i-2,j,k,0) - Ez(i-1,j,k)
          - Ezright(i-1,j,k,1))  + c30*Ezright(i-1,j,k,0) - Ezright(i-2,j,k,1)
;
      
    for(ii=LIMX-3; ii<LIMX; ii++) {
      Ezright(ii,j,k,1) = Ezright(ii,j,k,0);
      Ezright(ii,j,k,0) = Ez(ii,j,k);
    }
      }
    }
    /* Ez below substrate */
    i=LIMX-1;
    for (j=0; j<LIMY-1; j++) {
      for (k=0; k<HEIGHT; k++) {
    Ez(i,j,k) = c11*(Ez(i-2,j,k)+Ezright(i,j,k,1))
      + c21*(Ezright(i,j,k,0) + Ezright(i-2,j,k,0) - Ez(i-1,j,k)
          - Ezright(i-1,j,k,1))  + c31*Ezright(i-1,j,k,0) - Ezright(i-2,j,k,1)
;
      
    for(ii=LIMX-3; ii<LIMX; ii++) {
      Ezright(ii,j,k,1) = Ezright(ii,j,k,0);
      Ezright(ii,j,k,0) = Ez(ii,j,k);
    }
      }
    }
#endif
    /************ Hx update. ************/
    for (i=0; i<LIMX; i++)
      for (j=0; j<LIMY-1; j++)
    for (k=0; k<LIMZ-1; k++)
      Hx(i,j,k) = Hx(i,j,k)
        + coefH*((Ey(i,j,k+1)-Ey(i,j,k)) - (Ez(i,j+1,k)-Ez(i,j,k)));
    
    /************ Hy update. ************/
    for (i=0; i<LIMX-1; i++)
      for (j=0; j<LIMY; j++)
    for (k=0; k<LIMZ-1; k++)
      Hy(i,j,k) = Hy(i,j,k)
        + coefH*((Ez(i+1,j,k)-Ez(i,j,k)) - (Ex(i,j,k+1)-Ex(i,j,k)));
    
    /************ Hz update. ************/
    for (i=0; i<LIMX-1; i++)
      for (j=0; j<LIMY-1; j++)
    for (k=0; k<LIMZ; k++)
      Hz(i,j,k) = Hz(i,j,k)
        + coefH*((Ex(i,j+1,k)-Ex(i,j,k)) - (Ey(i+1,j,k)-Ey(i,j,k)));
    
    fprintf(obs,"%f\n",Ez((LINE_X_START+LINE_X_END)/2,PATCH_Y_START-10,2));
  }
  fclose(obs);
  return 0;
}
/* ------------------------- end of main ------------------------- */
/* ########################## gaussian ########################### */
/* Gaussian pulse.
*/
double gaussian(int ntime, double cdtds, int ippw) {
  double arg, time;
  time = (double)(ntime);
  arg = pow(M_PI*(cdtds*time/(double)(ippw)-1.),2);
  /* If the argument is greater than 70.0, the result is so small we
     may as well skip calculating the exponential and return zero. */
  if (arg > 70.0) {
    return 0.0;
  } else {
    return exp(-arg);
  }
}
/* ------------------------ end of gaussian ------------------------ */
/* ########################### init ############################# */
void init() {
  int i, j, k;
  /* Initialize all fields. */
  /* Ex. */
  for (k=0;k<LIMZ;k++)
    for (j=0;j<LIMY;j++)
      for (i=0;i<LIMX;i++)
    Ex(i,j,k) = 0.;
  /* Ey. */
  for (k=0;k<LIMZ;k++)
    for (j=0;j<LIMY;j++)
      for (i=0;i<LIMX;i++)
    Ey(i,j,k) = 0.;
  /* Ez. */
  for (k=0;k<LIMZ;k++)
    for (j=0;j<LIMY;j++)
      for (i=0;i<LIMX;i++)
    Ez(i,j,k) = 0.;
  /* Hx. */
  for (k=0;k<LIMZ;k++)
    for (j=0;j<LIMY;j++)
      for (i=0;i<LIMX;i++)
    Hx(i,j,k) = 0.;
  /* Hy. */
  for (i=0;i<LIMX;i++)
    for (j=0;j<LIMY; j++)
      for (k=0; k<LIMZ; k++)
    Hy(i,j,k) = 0.;
  /* Hz. */
  for (i=0; i<LIMX; i++)
    for (j=0; j<LIMY; j++)
      for (k=0; k<LIMZ; k++)
    Hz(i,j,k) = 0.;
  /* ABC arrays */
  for (i=0; i<LIMX; i++)
    for(j=LIMY-3; j<LIMY; j++)
      for(k=0; k<LIMZ; k++) {
    Exfar(i,j,k,0) = 0.0;
    Exfar(i,j,k,1) = 0.0;
    Ezfar(i,j,k,0) = 0.0;
    Ezfar(i,j,k,1) = 0.0;
    Exnear(i,j,k,0) = 0.0;
    Exnear(i,j,k,1) = 0.0;
    Eznear(i,j,k,0) = 0.0;
    Eznear(i,j,k,1) = 0.0;
      }
  for (i=0; i<3; i++)
    for(j=0; j<LIMY; j++)
      for(k=0; k<LIMZ; k++) {
    Eyleft(i,j,k,0) = 0.0;
    Eyleft(i,j,k,1) = 0.0;
    Ezleft(i,j,k,0) = 0.0;
    Ezleft(i,j,k,1) = 0.0;
      }
  for (i=0; i<LIMX; i++)
    for(j=0; j<LIMY; j++)
      for(k=0; k<3; k++) {
    Extop(i,j,k,0) = 0.0;
    Extop(i,j,k,1) = 0.0;
    Eytop(i,j,k,0) = 0.0;
    Eytop(i,j,k,1) = 0.0;
      }
  for (i=LIMX-3; i<LIMX; i++)
    for(j=0; j<LIMY; j++)
      for(k=0; k<LIMZ; k++) {
    Eyright(i,j,k,0) = 0.0;
    Eyright(i,j,k,1) = 0.0;
    Ezright(i,j,k,0) = 0.0;
    Ezright(i,j,k,1) = 0.0;
      }
}
/* ------------------------- end of init ------------------------ */
.196

arock大侠,这份程序有没有什么详细些的解释,刚入手,看得比较费劲,如果有,劳烦能不能给我mail一份,多谢了!bentao@163.com
.69

这个程序是关于Sheen的文章的,你可以看看那篇文章。
程序本身结构很简单。主要有些预编译的选项。
自习分析一下程序救治到了。
没有详细的说明。
.126

Sheen哪篇文章啊,题目?劳烦告知!
.69

谢谢ymonkey的回复。
网上FDTD的源程序很多,Schneider博士的FDTD程序也是学生作业,很简单的。
.196

* This code was provided as the solution to a homework problem I
* assigned in EE 417/517 at Washington State University in the Spring
* of 2003.  The goal was to write a program which would duplicate, at
* least to a large extend, the patch antenna work described by Sheen
* et al., IEEE Trans. MTT, 38(7):849--857, 1990.  HOWEVER, unlike
.126

Application of the Three-Dimensional Finite-Difference Time-Domain Method    
to the Analysis of Planar Microstrip Circuits                                
这个,                                                                        
  
可以到这里来看看,                                                            
http://www.borg.umn.edu/toyfdtd/ToyFDTD.html                                  
有些例程序,是c或fortran,看看大概思路,计算的大概流程                        
                                                                            
上面的文章是关于贴片天线的,可以照着做,                                      
                                                                          
振子天线,去看看细导线的网格处理方法
激励看看这个文章吧
On the convergence of common FDTD feed models for antennas
.2

多谢指点了,及时雨啊,刚刚入门,正在摸索,希望以后有机会一起交流:)
.69

这篇文章个人认为可谓经典,俺当初就是认真的将这篇文章上的内容
做了一遍的,感觉收获很大。也自己动手将程序写了一遍作为交给老
的师大作业,只是没有那位老兄写的规范。
.39

Top