问一个排队论的问题
一个包A到达的时候 server正在服务另一个包B 包B有一个剩余的服务时间R
包A的等待时间记为W
根据数学推导 我们可以知道 E(R)=E(W)*(1-rou) 其中 rou=lamda/mu
1-rou 是server 空闲的概率
请问这个式子有啥物理解释
囧 完全想不到 :(
.175
It shows the simple fact the waiting time in queue for A is exactly the
residual service time for B if A is facing an empty queue upon arriving
at the system.
A little confusing... Since the probability that A is facing an empty server is 1-\rou, in this case R=0.
A possible interpretation is \rouE[W] is the cumulative service time for the queued jobs, but it is not straightforward and needs Little's law.
Sorry, my statement was imcomplete. The event I described is meant to say that
the queue is empty but the server is busy. In any case, a direct interpretation
is not that obvious.
One thing fotgot to mention (too sleepy last night): the formula is just a
variation of Pollaczek-Khintchine formula, so any interpretation that applies
to PK would work for this one :)
相关文章:
- 找本绝版书,现代通信中的排队论,陈鑫林,电子工业出版(05-08)
- 有没有学过排队论的。(05-08)
- 请大家推荐一下有关无线网络中的排队论 概率论的书?(05-08)
- 请教一个排队论问题(05-08)
- 请教排队论和通信中的一个问题(05-08)
- Re: 请教 排队论中关于多级排队的问题(05-08)