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Abstract�This project examines maximal ratio combining (MRC) in independent 
and correlated Rayleigh fading channels.  While channel correlation is a key factor in 
the performance of linear combining, significant performance improvement can still 
be achieved with semi-correlated fading channels with .6ρ ≈ .  Also, the antenna 
separation required at the base station (BS) and mobile station (MS) to achieve the 
same degree of signal decorrelation (and therefore performance improvement) is not 
the same due to the inherently different environments around the BS and MS. 
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1.  INTRODUCTION 

In mobile wireless communications, multipath fading can cause constructive 
and destructive interference. A popular method to mitigate the effects of multipath 
fading is diversity, a process of obtaining multiple independent signal branches 
through many dimensions including space, polarization, frequency, and time [1]. The 
collection of independently fading signal branches can then be combined in a variety 
of ways to improve the received signal-to-noise ratio (SNR). 

The three most prevalent space diversity combining techniques are selection 
combining (SC), equal gain combining (EGC), and MRC. MRC co-phases the signal 
branches, weights them according to their respective SNRs, and then takes their sum. 
MRC is the most complex combining technique, but also yields the highest SNR [4].  
This project will analyze the performance of MRC in both independent and correlated 
fading channels. 
 For space diversity combining, one key assumption is that the antennas are 
spaced far apart enough such that the received signal branch at each antenna will 
experience independent channel fading [2].  With the decreasing size of mobile 
devices, the space required for antenna decorrelation is not met [3].  In this project we 
examine through analysis and simulation how much antenna separation is required for 
satisfactory fading decorrelation.  Furthermore, due to the dissimilarity between the 
base station (BS) and mobile station (MS) surroundings, the amount of antenna 
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separation required at the BS and MS for a given correlation coefficient will also be 
examined. 
 
2.  MRC WITH INDEPENDENT FADING 
2.1.  Signal-To-Noise Ratio 

We will consider the case of MRC in a single-input multiple-output (SIMO) 
system with M receive antennas.  In order to examine the impact of MRC, we will 
derive an expression for the SNR with MRC, γ∑ , in terms of M as well as the SNR of 

a single-input single-output (SISO) antenna configuration (or equivalently, the SNR of 
a single branch of the MRC system, γm ). This will show whether an MRC system can 
satisfy a target BER constraint at a higher or lower SNR than a system without MRC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Linear Combiner [2] 
 

Figure 1 shows a diagram of a linear combiner that implements either selection 
combining (SC), equal gain combining, (EGC), or MRC [2].  We will focus on MRC.  
Given M receiver antennas and ignoring noise, the received signal on the mth antenna 
can be expressed as ( )θmj

mr e s t , where rm is the envelope magnitude, θm is the phase of 
the received signal branch, and s(t) is the transmitted signal.  The signal branch at 
each antenna is then multiplied by a complex number θα −= mj

m ma e  in the linear 
combiner such that each of the signal branches are cophased (i.e. all branches have 
zero phase).  Then the cophased branches are summed, and the resultant signal 

envelope is 
1

∑
=

=∑
M

m m
m

r a r . 
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The combiner output signal power is then: 
2

2

1
∑

=

 =  
 
∑
M

m m
m

r a r . 

To compute the SNR, we also need the total noise power.  Assuming that each 
antenna has the same noise power N (which is plausible due to the similar construction 
of each receiver), and after the noise in each branch is multiplied by its respective αm , 
the combiner output noise power is: 

2

1
∑

=
=∑

M

m
m

N a N . 

The combiner output SNR, γ∑ , can now be expressed as: 
2 2

2
1 1

2 2

1 1

1γ = =∑
∑

∑

= =

   
   
   = = = ⋅
∑ ∑

∑ ∑

M M

m m m m
m m

M M

m m
m m

a r a r
r
N Na N a

. 

As MRC system designers we want to maximize γ∑ .  After cophasing, the only 

variables left for designers to work with are the ma s, which can be found by invoking 
the Swartz inequality [6], which gives us [7]: 

2
2 2

1 1 1= = =

  ≤   
  

∑ ∑ ∑
M M M

m m m m
m m m

a r r a  

Assuming all ma s and mr s are positive, the Swartz inequality becomes: 
2

2 2

1 1 1= = =

    ≤    
    
∑ ∑ ∑
M M M

m m m m
m m m

a r r a  

Substituting into the equation for γ∑ , we get: 
2

2 2

1 1 1 2

2 2 1

1 1

1 1 1γ = = =
∑

=

= =

    
          = ⋅ ≤ ⋅ = ⋅ 

 

∑ ∑ ∑
∑

∑ ∑

M M M

m m m m M
m m m

mM M
m

m m
m m

a r r a
r

N N Na a
. 

The above relationship shows that the maximum γ∑  can be obtained if we select 

values for the ma s such that 

2

1 2

2 1

1

1 1γ =
∑

=

=

 
    = ⋅ = ⋅ 

 

∑
∑

∑

M

m m M
m

mM
m

m
m

a r
r

N Na
.  By inspection we see 

that if we set =m ma Kr  for some constant K, then we will maximize γ∑ , obtaining: 
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( )

2 2
2 2 2

2
1 1 2

2 2 2 1 1 1

1 1

1 1 1γ γ= =
∑

= = =

= =

   
        = ⋅ = ⋅ = ⋅ = = 

 

∑ ∑
∑ ∑ ∑

∑ ∑

M M

m m M M M
m m m

m mM M
m m m

m m
m m

Kr K r
rr

N N N NKr K r
. 

But, 
2

γ=m
m

r
N

 is the SNR of each received signal branch, so in an MRC system γ∑  is 

just equal to the sum of all the γm s: 

1
γ γ∑

=
=∑

M

m
m

 

Furthermore, if all branches have equal average SNR γ m , then: 

γ γ∑ = ⋅ mM  

A key point from this result is that a minimum SNR requirement can be met with 
MRC, even if none of the individual branch SNRs meet the minimum requirement. 
 
2.2.  Probability of Bit Error 

First we express the probability of error (i.e. BER) conditioning upon { }γm .  

This is given by the BER expression for BPSK in AWGN [2]: 

{ }( ) ( )
/ 2

2
0

/ 2

2
10

1error | 2 exp
sin

1 exp ,  0
sin

π

π

γγ γ φ
π φ

γ φ γ
π φ

∑
∑

∑
=

 
= = − 

 
 

= − ≥ 
 

∫

∏∫

b m

M
m

m

P d

d

Q
 

where we have utilized Craig�s alternate representation of the Q-function.  From here, 
the unconditional BER can be found by averaging the conditional BER over the joint 
probability density function (PDF) of the branch SNRs { }mγ .  Assuming independent 
fading on each branch, the unconditional BER consists of M integrals of the following 
form: 

( ) { }( ) ( )m 1 2
10 0 0

-fold

error error| ;
m

M

b b m Mm
m

M

P P p d d dγγ γ γ γ γ γ
∞ ∞ ∞

=

= ∏∫ ∫ ∫L L

14243

 

where the term after the semicolon is the parameter for the Rayleigh distribution.  
Substituting in for the conditional probability of error gives: 
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( ) ( )

( )

/ 2

1 22
1 10 0 0 0

-fold

/ 2

1 22
10 0 0 0

-fold

1error exp ;
sin

1 exp ;
sin

π

γ

π

γ

γ φ γ γ γ γ γ
π φ

γ γ γ φ γ γ γ
π φ

∞ ∞ ∞

= =

∞ ∞ ∞

=

 = − 
 

 
= − 

 

∏ ∏∫ ∫ ∫ ∫

∏∫ ∫ ∫ ∫

L L

14243

L L

14243

m

m

M M
m

b m Mm
m m

M

M
m

m Mm
m

M

P d p d d d

p d d d d
 

Because the integrand is absolutely integrable, we can interchange the order of 
integration in our expression for ( )errorbP  [5].  Also, assuming identically Rayleigh-

distributed channels with the same average SNR on each branch, i.e. 

( ) ( ); ;γ γγ γ γ γ=
m m mp p  and for  γ γ= ∀m m , we get: 

( ) ( )/ 2

1 220 0 0 0
1

-fold

/ 2

0
2

1error exp ;
sin

1 1 ;
sin

π

γ

π

γ γ γ γ γ γ φ
π φ

γ φ
π φ

∞ ∞ ∞

=

 
= − 

 

  
= Μ −     

∏∫ ∫ ∫ ∫

∫

L L
14243 m

M
m

b m Mm
m

M

M

r

P p d d d d

d

 

where 
2

1 ;
sin

γ
φ

 
Μ − 

 
r  is the moment generating function (MGF) of the Rayleigh 

distribution of the SNR of each branch, ( );γ γ γp , assuming BPSK modulation.  The 

expression for the MGF is: 
1

2 2

1 ; 1
sin sin

γγ
φ φ

−
  Μ − = +  

   
r  

Substituting in the MGF, we arrive at our final expression for the BER of a SIMO 
MRC system with M receive antennas: 

( ) / 2

 (MRC, indep. fading) 20

1error 1
sin

π γ φ
π φ

−
 

= + 
 

∫
M

bP d . 
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2.3.  Analytical BER Results 
MATLAB was used to calculate the following analytical BER results: 
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Figure 2: Analytical BER versus SNR for 1, 2, 3, and 4 receive antennas 

 
Note that as the number of receive antennas increases, the slope of the BER curve gets 
steeper, which is consistent with our SNR analysis. 
 
2.4.  Simulation BER Results 

The BPSK modulated transmitted signal 1 or 1x = + −  is multiplied by a 
Rayleigh fading channel and then AWGN is added to the result, forming the received 
signal.  The matrix equation for the received signal branches is shown below: 

1 1 1

2 2 2

y h n
x

y h n

= +

     
= +     

     

y Hx N
 

where 1

2

y
y
 

=  
 

y  is the received signal vector, 1

2

h
h
 

=  
 

H  is the channel matrix, and 

1

2

n
n
 

=  
 

N  is the noise matrix for two receive antennas.  The MRC receiver then 

cophases and weights the received signal branches by multiplying it by the conjugate 
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transpose of the channel matrix (assuming the receiver knows the channel perfectly) 
and normalizing the result: 

( )
$

2 2* *
1 2

* *

2 2 2 2
1 2 1 2

.

h h x

x x
h h h h

= + +

= = +
+ +

H y H N

H y H N  

$x  is then decoded into a +1 or �1 using a maximum likelihood decoder. 
 Here are the simulation BER results from my previous work [8]. 
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Figure 3: Simulation BER versus SNR for 1, 2, 3, 4, and 5 receive antennas 

(includes BER in an AWGN channel without fading) 
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2.5.  Comparison of Simulation to Analytical Results 

0 5 10 15 20 25 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Average SNR (dB)

A
ve

ra
ge

 B
E

R
Diversity with Receive MRC

L = 1, AWGN only, simulation
L = 1, simulation
L = 2, simulation
L = 3, simulation
L = 4, simulation
L = 5, simulation
L = 1 analytical
L = 2 analytical
L = 3 analytical
L = 4 analytical

 
Figure 4: Comparison of Simulation to Analytical BER Results 

 
From this plot we see that the simulation produces BER results very close to 

those predicted by our analysis.  The slight differences can be attributed to an 
insufficiently large number of trials to average over (which was limited due to 
extremely long simulation run-times). 
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3.  MRC WITH CORRELATED FADING 
3.1.  Signal-to-Noise Ratio 

Consider an MRC system with 2 receive antenna branches with correlated 
Rayleigh fading channels.  Here we discuss a method described by [3] to transform 
two correlated signal branches with respective SNRs 1γ  and 2γ  into two independent 
signals with respective SNRs 3γ  and 4γ .  As before, the received signal at antenna 
branch l  ignoring noise is expressed as ( )jr e s tθl

l  where rl  is a Rayleigh-distributed 
random variable.  If we include noise into our signal model, we can express the 
received signals at antenna 1 and antenna 2 respectively as: 

1

1

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

j

j

y t re s t n t

y t r e s t n t

θ

θ

= +

= +
 

where ( )n tl  is AWGN with zero mean for 1,2=l .  The fading envelope jr e θl

l  can be 
expressed as a sum of the in-phase and quadrature components of the envelope: 

, ,
j

I Qr e r jrθ = +l

l l l  
where ,Irl  and ,Qrl  are independent zero mean Gaussian random variables with 
variance 2

Gσ .  Also, by definition, the correlation ,I Qρ  between the in-phase and 
quadrature component for each fading envelope is always zero.  We can now express 
the received signals as: 

( )
( )

1 1, 1, 1

2 2, 2, 2

( ) ( ) ( )

( ) ( ) ( )

I Q

I Q

y t r jr s t n t

y t r jr s t n t

= + +

= + +
 

This shows that in order to examine the correlation between the fading 
envelopes 1

1
jr e θ  and 2

2
jr e θ , we can equivalently examine the correlation Iρ  between 

the in-phase components 1,Ir  and 2,Ir  as well as the correlation Qρ  between the 
quadrature components 1,Qr  and 2,Qr .  For this analysis we assume I Q Gρ ρ ρ= =  
where G denotes the correlation between two Gaussian distributed fading envelope 
components.  For 0Gρ = , we have uncorrelated fading channels described by the 
covariances between each combination of two Gaussian random variables [14]: 

( ) ( )

( )

1, 2 ,1, 2, 1, 2,

2 2

1, 2,

Cov , ,

0,

Cov , 0.

I II I I I r r

I G G G

Q Q

r r r r

r r

ρ σ σ

ρ σ ρ σ

= ⋅

= = =

=

 

Similarly, , 0Q I Qρ ρ= = , which gives us: 

( ) ( ) ( ) ( )1, 1, 1, 2, 1, 2, 2, 1,Cov , Cov , Cov , Cov , 0.I Q I Q I Q I Qr r r r r r r r= = = =  

For 0 1Gρ< ≤ , all cross-correlations remain equal to zero except ( )1, 2,Cov ,I Ir r  and 

( )1, 2,Cov ,Q Qr r : 

( ) ( ) 2
1, 2, 1, 2,Cov , Cov , .I I Q Q G Gr r r r ρ σ= =  

Assuming that the average SNR is the same at both receive antennas, we have: 
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[ ] [ ]2 2 2

2

var 2 for 1,2.
( )

G
E r r E r

N NE n t
σγ γ

  + = = = = =
  

l l l
l

ll

l  

We now introduce a transformation from the correlated received signal 
branches 1( )y t  and 2 ( )y t  into independent signal branches 3 ( )y t  and 4 ( )y t .  Define 
the following transformation matrix T: 

2 2
2 2

2 2
2 2

T
 

=  
−  

. 

If we apply the T to the 1( )y t  and 2 ( )y t , we will get 3 ( )y t  and 4 ( )y t  expressed as 
linear combinations of 1( )y t  and 2 ( )y t : 

( ) ( )
( )

2 2
3 1 12 2

2 2
4 2 22 2

2 2
1 22 2

2 2
1 22 2

2 2
1, 1, 1 2, 2, 22 2

2 2
1, 1, 1 2, 22 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

I Q I Q

I Q I

y t y t y t
T

y t y t y t

y t y t

y t y t

r jr s t n t r jr s t n t

r jr s t n t r jr

      
= =       −       
 +

=  
− +  

   + + + + +   =
 − + + + +  ( )

( ) ( )

, 2

2 2 2 2 2 2
1, 1, 1 2, 2, 22 2 2 2 2 2

2 2 2 2 2 2
1, 1, 1 2, 2, 22 2 2 2 2 2

2 2 2 2 2
1, 2, 1, 2, 12 2 2 2 2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) (

Q

I Q I Q

I Q I Q

I I Q Q

s t n t

r s t j r s t n t r s t j r s t n t

r s t j r s t n t r s t j r s t n t

r r j r r s t n t

 
 
  +  
 + + + + +

=  
− − − + + +  

 + + + + =
( ) ( )

( )
( )

2
22

2 2 2 2 2 2
1, 2, 1, 2, 1 22 2 2 2 2 2

3, 3, 3

4, 4, 4

) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

I I Q Q

I Q

I Q

n t

r r j r r s t n t n t

r jr s t n t

r jr s t n t

 +
 
  − + + − + − +   
 + +
 =
 + + 

 

where 

3, 1, 2,

3, 1, 2,

3 1 2

2 2
2 2
2 2

2 2
2 2( ) ( ) ( )

2 2

I I I

Q Q Q

r r r

r r r

n t n t n t

= +

= +

= +
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4, 1, 2,

4, 1, 2,

4 1 2

2 2
2 2
2 2

2 2
2 2( ) ( ) ( )

2 2

I I I

Q Q Q

r r r

r r r

n t n t n t

= − +

= − +

= − +

 

All of the above expressions are sums of zero mean Gaussian random variables, which 
means that the sums are also zero mean Gaussian random variables.   Furthermore: 

( )3, 4, 3, 4, 3, 4,

1, 2, 1, 2,

1, 2, 1, 2,

2 2
1, 2,

1, 2,

Cov ,

2 2 2 2
2 2 2 2

2 2 2 2
2 2 2 2

1 1
2 2

2 2
2 2

I I I I I I

I I I I

I I I I

I I

I I

r r E r r E r E r

E r r r r

E r r E r r

E r r

E r E r

     = −     
   

= + − + −   
    
      

+ − +      
         
 = − + −  

   +   

( )

1, 2,

2 2 2 2
1, 2, 1, 2,

2 2 2 2
1, 2, 1, 2,

2 2

2 2
2 2

1 1 1 1
2 2 2 2
1 1 1 1
2 2 2 2

1 0.
2

I I

I I I I

I I I I

G G

E r E r

E r E r E r E r

E r E r E r E r

σ σ

  
   − +     

  
        = − + − − +         

       = − + + −      

= − =
 

Since r3,I and r4,I are Gaussian and uncorrelated, this means that they are independent.  
Similarly, r3,Q, r4,Q, n3(t), and n4(t) are mutually independent.  The variances of r3,I, r4,I, 
r3,Q, and r4,Q are [9]: 

( )

( )

3, 3,

2 2 2 2 2 2 2
3

4, 4,

2 2 2 2 2 2 2
4

var var

1 1 12 1
2 2 2

var var

1 1 12 1 .
2 2 2

I Q

G G G G G G G G G

I Q

G G G G G G G G G

r r

r r

σ σ ρ σ σ σ ρ σ ρ σ

σ σ ρ σ σ σ ρ σ ρ σ

   =   

= = + ⋅ + = + = +

   =   

= = − ⋅ + = − = −

 

The noise powers are: 

3 1 2

4 1 2

1 1
2 2
1 1 .
2 2

N N N N

N N N N

= + =

= + =
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So the average SNRs of y3(t) and y4(t) are: 
( ) ( )

( ) ( )

2

3

2

4

2 1
1

2 1
1

G G
G

G G
G

N

N

ρ σ
γ ρ γ

ρ σ
γ ρ γ

+
= = +

−
= = −

 

This shows that two correlated fading signal branches with equal average SNR can be 
transformed into two independent fading signal branches with unequal average SNRs 
dependent on the fading correlation coefficient.  Clearly this will lead to performance 
degradation if the MRC continues to operate as if it were receiving independently 
fading signals. 
 
1.2.  Probability of Bit Error 

First we define the moment generating function (MGF) of γ∑  [2]: 

( ) ( )
0

sC s e p dγ
γ γ γ∑

∑

∞

∑ ∑= ∫  

The average BER is given by: 

( ) ( )
0

b bP P p dγ γ γ
∞

∑ ∑ ∑= ∫  

The expression for ( )bP γ∑  for BPSK can be simplified to [10]: 

( ) ( ) 1

1 12 exp
2bP s ds

s s a
γ γ γ

π
∞

∑ ∑ ∑= = −  −∫Q . 

Utilizing the MGF of γ∑  and interchanging the order of integration, we get following 
expression for the average BER: 

( )

( )
( )

0 1

1 0

1

1 1 exp
2

1 1 exp
2

1 .
2

bP s p dsd
s s a

s p d ds
s s a
C s

ds
s s a

γ

γ γ γ
π

γ γ γ
π

π
∑

∞ ∞

∑ ∑ ∑

∞ ∞

∑ ∑ ∑

∞

= −  −

= −  −

=
−

∫ ∫

∫ ∫

∫

 

 
Let 1 2

T

Lγ γ γ =  γ L .  Define the L-variate MGF of γ  as: 

( ) ( )
0 0

1exp T

s x

C p d
I D D Mγ

∞ ∞
 = − =  +∫ ∫γ γs γ s γ γL  

for Rayleigh fading, where [ ]1 2
T

Ls s s=s L , I is an L L×  identity matrix, sD is a 
diagonal matrix { }1 2diag Ls s sL , Dγ  is a diagonal matrix 

{ }1 2diag Lγ γ γL ,  and MX is the covariance matrix.  For an array with L 
antennas equally spaced by distance d: 
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( ) ( )
2

2, exp ,  , 1,2, ,
2X
k dM i j i j i j L

λ
  = − − =  

   
L  

where k is set to 21.4 to emulate the Bessel correlation model [10].  Next, ( )C sγ∑
 can 

be expressed in terms of ( )Cγ s  through the following relationship: 

( ) ( )
1 2

.
Ls s s s

C s Cγ∑ = = = =
= γ s

L
 

This gives us: 

1

1 1 1
2

b

X

P ds
s s a I sD Mγ

π
∞

=
− +∫ . 

 
3.3.  Analytical BER Results 
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Figure 5: Analytical BER versus SNR for 1 receive antenna (L = 1) 

(All lines overlap) 
 

This result makes sense because for one receive antenna, the signal is correlated with 
itself. 
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Figure 6: Analytical BER versus SNR for 2 receive antennas (L = 2) 

Figure 7: Analytical BER versus SNR for 3 receive antennas (L = 3) 
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Figure 8: Analytical BER versus SNR for 4 receive antennas (L = 4) 

 
From Figures 5 through 8 we see that if the antennas are spaced much less than .1 cλ  
apart, then adding antennas does not improve BER performance significantly.  
However, for antenna separation distances greater than .1 cλ , adding antennas can 
significantly improve BER performance.  We also notice that for a given number of 
receive antennas, increasing the separation distance improves BER performance as 
expected. 
 
3.4.  Simulation BER Results for MRC at the Mobile Station 

In the simulations for correlated fading channels, we address only the case with 
two receive antennas.  The correlation coefficient between the two fading channels is 
dependent on the separation distance between the two antennas.  Our analytical 
expression for the probability of bit error was derived under the assumption of 
negligible scattering.  This assumption holds true for MRC at the mobile station (MS) 
because the base station (BS) is typically a tall structure that rises above the 
surroundings such that there are no nearby scatterers [12].  Thus, we use Stuber�s 
simple Bessel function model [13] for the correlation coefficient between received 
signals: 

( )2
0 2 / cJ dρ π λ=  

where ( )0J x  is the zeroth-order Bessel function of the first kind, d  is the separation 
distance between the two antennas, and cλ  is the carrier wavelength. 
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MATLAB was used to compute the following results: 
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Figure 9: Simulation BER versus SNR for 2 receive antennas at the MS 

(l = distance between antennas in the legend) 
 

Observe that as 
c

d
λ

 approaches .3 or .4, we have nearly optimal BER performance. 
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3.5.  Simulation BER Results for MRC at the Base Station 
Consider the following scattering model from [12]: 

 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
Figure 10: Effect of Scattering at the MS on the Received Signal at the BS [12] 

 
In the scattering model, a  denotes the scattering circle radius around the MS, x  
denotes the distance from the BS to the MS, and ξ  denotes the angle in radians 
between the line-of-sight (LOS) and the direction of relative motion between the BS 

and the MS.  For our purposes, we will assume that 
2
πξ =  which means that the MS 

is moving perpendicular to the LOS.  We will also assume that x  is relatively large 
such that ξ  does not change significantly during time intervals of interest and the 

ratio ak
x

=  is very small.  Assuming the MS to be operating at a point about 3.2 

kilometers (about 2 miles) and a scattering radius of 16 meters (due to surrounding 
buildings), we get .005k = .  The correlation coefficient using Jake�s scattering model 
is given by [12]: 

2 2 2 23
0 0 4

12 sin 2 1 cos
2c c

d dJ k J kρ π ξ π ξ
λ λ

   
= −   

   
. 

x
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MATLAB was used to produce the following results: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Simulation BER versus SNR for 2 receive antennas at the BS 
 
3.6.  Comparison of Simulation to Analytical Results 

As our analytical results were based on negligible scattering, we first compare 
the simulation for MRC at the MS with the analytical results.  Notice that the 
simulation result is slightly different from the analytical result, because Stuber�s 
simple Bessel function model is meant as an approximation.  The results depict BER 
improvement as antenna correlation decreases, but even with relatively high antenna 

correlation with .2 .4128
c

d ρ
λ

≈ ⇒ ≈ , we still have considerable BER improvement 

with MRC at the MS.  From Figure 9, we see that for .4 .003021
c

d ρ
λ

> ⇒ <  we 

achieve near-optimal BER performance. 
 Since the simulation results for MRC at the BS with scattering at the MS 
cannot be compared to the analytical results, we compare it to the simulation results 
for MRC at the MS.  Significant improvement is observed when even with significant 

antenna correlation where 30 0.6240
c

d ρ
λ

≈ ⇒ ≈ .  Notice that for the BS, the 

antennas must be separated much further apart from each other 

( 70 0.01229
c

d ρ
λ

> ⇒ < ) to achieve antenna decorrelation than for the MS.  This is 
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consistent with Jake�s model where the BS antenna separation must be a factor of 

about ( )
1

1sin .005sin 200
2

k πξ
−

−  = = 
 

 times greater than the MS antenna separation 

in order to achieve the same fading channel decorrelation.  This is intuitively 
satisfying because scatterers (such as those around the MS) would contribute to signal 
decorrelation, whereas the lack of scatterers (around the BS) would require a greater 
antenna separation distance to achieve the same degree of decorrelation. 
 

4.  CONCLUSION 
We have achieved analytical and simulation results for the BER performance 

of maximal ratio combining under independent and correlated Rayleigh fading 

channels.  At the mobile station, .4
c

d
λ

>  is sufficient antenna spacing to achieve 

decorrelated channels, while at the base station, 
c

d
λ

 must be greater than 70 due to the 

signal scattering from the structures around the mobile station.  Even if these antenna 
separation distances cannot be implemented in practice, performance can still be 
significantly improved with semi-correlated channels with ρ  up to about .6. 
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LIST OF VARIABLES FOR SECTION 2 (MRC with Independent Fading): 
number of receive antennas
signal branch index
SNR of post-combining signal
SNR of signal branch 
fading envelope magnitude of signal branch 
random phase of signal branch 

( ) transmitt

m

m

m

M
m

m
r m

m
s t

γ
γ

θ

∑

=
=
=
=
=
=
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complex multiplier for signal branch 
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noise power on each signal branch
noise power of post-combining sig

m
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m
a
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α
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=
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probability of bit error
transmitted bit
received signal vector
channel matrix
noise vector

estimated bit
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=
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LIST OF VARIABLES FOR SECTION 3 (MRC with Correlated Fading): 
1 2

3 4

, ,

, SNR of correlated fading signal branches
, SNR of independent fading signal branches

number of receive antenna branches
signal branch index
fading envelope expressed as sum of GauI Q

L

r jr

γ γ
γ γ

=
=
=
=

+ =l l

l

2

1 2

3 4

ssian in-phase and quadrature components

variance of Gaussian fading components
( ), ( ) correlated received signal branches
( ), ( ) independent received signal branches

correlation coeffici

G

I

y t y t
y t y t

σ

ρ

=
=
=
= ent between in-phase fading components

correlation coefficient between quadrature fading components

average SNR of signal branch 
transformation matrix
probability of bit error

average proba

Q

b

b

T
P

P

ρ

γ

=

=
=
=

=

l l

( )0

bility of bit error
SNR of post-combining signal
antenna separation distance
diagonal matrix of average SNRs on each branch

covariance matrix
zeroth-order Bessel function of the first kind

X

d
D

M
J x

a

γ

γ∑ =
=
=

=
=
= radius of scattering circle around mobile station (MS)

distance from base station (BS) to MS
ratio of  to 
angle in radians between line-of-sight (LOS) and direction of MS motion

x
k a x
ξ

=
=
=

 


