
Chapter 9

Random Numbers

This chapter describes algorithms for the generation of pseudorandom numbers with
both uniform and normal distributions.

9.1 Pseudorandom Numbers
Here is an interesting number:

0.95012928514718

This is the first number produced by the Matlab random number generator with
its default settings. Start up a fresh Matlab, set format long, type rand, and it’s
the number you get.

If all Matlab users, all around the world, all on different computers, keep
getting this same number, is it really “random”? No, it isn’t. Computers are (in
principle) deterministic machines and should not exhibit random behavior. If your
computer doesn’t access some external device, like a gamma ray counter or a clock,
then it must really be computing pseudorandom numbers. Our favorite definition
was given in 1951 by Berkeley professor D. H. Lehmer, a pioneer in computing and,
especially, computational number theory:

A random sequence is a vague notion . . . in which each term is unpre-
dictable to the uninitiated and whose digits pass a certain number of
tests traditional with statisticians . . .

9.2 Uniform Distribution
Lehmer also invented the multiplicative congruential algorithm, which is the basis for
many of the random number generators in use today. Lehmer’s generators involve
three integer parameters, a, c, and m, and an initial value, x0, called the seed. A

December 26, 2005

1

2 Chapter 9. Random Numbers

sequence of integers is defined by

xk+1 = axk + c mod m.

The operation “mod m” means take the remainder after division by m. For example,
with a = 13, c = 0, m = 31, and x0 = 1, the sequence begins with

1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5, 3,

What’s the next value? Well, it looks pretty unpredictable, but you’ve been ini-
tiated. So you can compute (13 · 3) mod 31, which is 8. The first 30 terms in
the sequence are a permutation of the integers from 1 to 30 and then the sequence
repeats itself. It has a period equal to m− 1.

If a pseudorandom integer sequence with values between 0 and m is scaled
by dividing by m, the result is floating-point numbers uniformly distributed in the
interval [0, 1]. Our simple example begins with

0.0323, 0.4194, 0.4516, 0.8710, 0.3226, 0.1935, 0.5161,

There is only a finite number of values, 30 in this case. The smallest value is 1/31;
the largest is 30/31. Each one is equally probable in a long run of the sequence.

In the 1960s, the Scientific Subroutine Package (SSP) on IBM mainframe
computers included a random number generator named RND or RANDU. It was a
multiplicative congruential with parameters a = 65539, c = 0, and m = 231. With
a 32-bit integer word size, arithmetic mod 231 can be done quickly. Furthermore,
because a = 216+3, the multiplication by a can be done with a shift and an addition.
Such considerations were important on the computers of that era, but they gave
the resulting sequence a very undesirable property. The following relations are all
taken mod 231:

xk+2 = (216 + 3)xk+1 = (216 + 3)2xk

= (232 + 6 · 216 + 9)xk

= [6 · (216 + 3)− 9]xk.

Hence
xk+2 = 6xk+1 − 9xk for all k.

As a result, there is an extremely high correlation among three successive random
integers of the sequence generated by RANDU.

We have implemented this defective generator in an M-file randssp. A demon-
stration program randgui tries to compute π by generating random points in a cube
and counting the fraction that actually lie within the inscribed sphere. With these
M-files on your path, the statement

randgui randssp

will show the consequences of the correlation of three successive terms. The resulting
pattern is far from random, but it can still be used to compute π from the ratio of
the volumes of the cube and sphere.

9.2. Uniform Distribution 3

For many years, the Matlab uniform random number function, rand, was
also a multiplicative congruential generator. The parameters were

a = 75 = 16807,

c = 0,

m = 231 − 1 = 2147483647.

These values are recommended in a 1988 paper by Park and Miller [10].
This old Matlab multiplicative congruential generator is available in the M-

file randmcg. The statement

randgui randmcg

shows that the points do not suffer the correlation of the SSP generator. They
generate a much better “random” cloud within the cube.

Like our toy generator, randmcg and the old version of the Matlab function
rand generate all real numbers of the form k/m for k = 1, . . . , m− 1. The smallest
and largest are 0.00000000046566 and 0.99999999953434. The sequence repeats
itself after m − 1 values, which is a little over 2 billion numbers. A few years ago,
that was regarded as plenty. But today, an 800 MHz Pentium laptop can exhaust
the period in less than half an hour. Of course, to do anything useful with 2 billion
numbers takes more time, but we would still like to have a longer period.

In 1995, version 5 of Matlab introduced a completely different kind of random
number generator. The algorithm is based on work of George Marsaglia, a professor
at Florida State University and author of the classic analysis of random number
generators, “Random numbers fall mainly in the planes” [6].

Marsaglia’s generator [9] does not use Lehmer’s congruential algorithm. In
fact, there are no multiplications or divisions at all. It is specifically designed to
produce floating-point values. The results are not just scaled integers. In place of a
single seed, the new generator has 35 words of internal memory or state. Thirty-two
of these words form a cache of floating-point numbers, z, between 0 and 1. The
remaining three words contain an integer index i, which varies between 0 and 31, a
single random integer j, and a “borrow” flag b. This entire state vector is built up
a bit at a time during an initialization phase. Different values of j yield different
initial states.

The generation of the ith floating-point number in the sequence involves a
“subtract-with-borrow” step, where one number in the cache is replaced with the
difference of two others:

zi = zi+20 − zi+5 − b.

The three indices, i, i+20, and i+5, are all interpreted mod 32 (by using just their
last five bits). The quantity b is left over from the previous step; it is either zero or
a small positive value. If the computed zi is positive, b is set to zero for the next
step. But if the computed zi is negative, it is made positive by adding 1.0 before it
is saved and b is set to 2−53 for the next step. The quantity 2−53, which is half of
the Matlab constant eps, is called one ulp because it is one unit in the last place
for floating-point numbers slightly less than 1.

4 Chapter 9. Random Numbers

By itself, this generator would be almost completely satisfactory. Marsaglia
has shown that it has a huge period—almost 21430 values would be generated before
it repeated itself. But it has one slight defect. All the numbers are the results of
floating-point additions and subtractions of numbers in the initial cache, so they
are all integer multiples of 2−53. Consequently, many of the floating-point numbers
in the interval [0, 1] are not represented.

The floating-point numbers between 1/2 and 1 are equally spaced with a
spacing of one ulp, and our subtract-with-borrow generator will eventually generate
all of them. But numbers less than 1/2 are more closely spaced and the generator
would miss most of them. It would generate only half of the possible numbers in
the interval [1/4, 1/2], only a quarter of the numbers in [1/8, 1/4], and so on. This
is where the quantity j in the state vector comes in. It is the result of a separate,
independent, random number generator based on bitwise logical operations. The
floating-point fraction of each zi is XORed with j to produce the result returned by
the generator. This breaks up the even spacing of the numbers less than 1/2. It is
now theoretically possible to generate all the floating-point numbers between 2−53

and 1− 2−53. We’re not sure if they are all actually generated, but we don’t know
of any that can’t be.

Figure 9.1 shows what the new generator is trying to accomplish. For this
graph, one ulp is equal to 2−4 instead of 2−53.

1/16 1/8 1/4 1/2

1/8

1/4

1/2

1

Figure 9.1. Uniform distribution of floating-point numbers.

The graph depicts the relative frequency of each of the floating-point numbers.
A total of 32 floating-point numbers are shown. Eight of them are between 1/2 and
1, and they are all equally like to occur. There are also eight numbers between
1/4 and 1/2, but, because this interval is only half as wide, each of them should
occur only half as often. As we move to the left, each subinterval is half as wide as
the previous one, but it still contains the same number of floating-point numbers,
so their relative frequencies must be cut in half. Imagine this picture with 253

numbers in each of 232 smaller intervals and you will see what the new random

9.3. Normal Distribution 5

number generator is doing.
With the additional bit fiddling, the period of the new generator becomes

something like 21492. Maybe we should call it the Christopher Columbus generator.
In any case, it will run for a very long time before it repeats itself.

9.3 Normal Distribution
Almost all algorithms for generating normally distributed random numbers are
based on transformations of uniform distributions. The simplest way to gener-
ate an m-by-n matrix with approximately normally distributed elements is to use
the expression

sum(rand(m,n,12),3) - 6

This works because R = rand(m,n,p) generates a three-dimensional uniformly dis-
tributed array and sum(R,3) sums along the third dimension. The result is a
two-dimensional array with elements drawn from a distribution with mean p/2 and
variance p/12 that approaches a normal distribution as p increases. If we take
p = 12, we get a pretty good approximation to the normal distribution and we
get the variance to be equal to one without any additional scaling. There are two
difficulties with this approach. It requires twelve uniforms to generate one normal,
so it is slow. And the finite p approximation causes it to have poor behavior in the
tails of the distribution.

Older versions of Matlab—before Matlab 5—used the polar algorithm.
This generates two values at a time. It involves finding a random point in the
unit circle by generating uniformly distributed points in the [−1, 1]× [−1, 1] square
and rejecting any outside the circle. Points in the square are represented by vectors
with two components. The rejection portion of the code is

r = Inf;
while r > 1

u = 2*rand(2,1)-1
r = u’*u

end

For each point accepted, the polar transformation

v = sqrt(-2*log(r)/r)*u

produces a vector with two independent normally distributed elements. This algo-
rithm does not involve any approximations, so it has the proper behavior in the tails
of the distribution. But it is moderately expensive. Over 21% of the uniform num-
bers are rejected if they fall outside of the circle, and the square root and logarithm
calculations contribute significantly to the cost.

Beginning with Matlab 5, the normal random number generator randn uses a
sophisticated table lookup algorithm, also developed by George Marsaglia. Marsaglia
calls his approach the ziggurat algorithm. Ziggurats are ancient Mesopotamian ter-
raced temple mounds that, mathematically, are two-dimensional step functions. A
one-dimensional ziggurat underlies Marsaglia’s algorithm.

6 Chapter 9. Random Numbers

Marsaglia has refined his ziggurat algorithm over the years. An early version
is described in Knuth’s classic The Art of Computer Programming [5]. The version
used in Matlab is described by Marsaglia and W. W. Tsang in [7]. A Fortran
version is described in [2, sect. 10.7]. A more recent version is available in the
online electronic Journal of Statistical Software [8]. We describe this recent version
here because it is the most elegant. The version actually used in Matlab is more
complicated, but is based on the same ideas and is just as effective.

The probability density function, or pdf, of the normal distribution is the
bell-shaped curve

f(x) = ce−x2/2,

where c = 1/(2π)1/2 is a normalizing constant that we can ignore. If we generate
random points (x, y), uniformly distributed in the plane, and reject any of them that
do not fall under this curve, the remaining x’s form our desired normal distribution.
The ziggurat algorithm covers the area under the pdf by a slightly larger area with
n sections. Figure 9.2 has n = 8; actual code might use n = 128. The top n − 1
sections are rectangles. The bottom section is a rectangle together with an infinite
tail under the graph of f(x). The right-hand edges of the rectangles are at the
points zk, k = 2, . . . , n, shown with circles in the picture. With f(z1) = 1 and
f(zn+1) = 0, the height of the kth section is f(zk) − f(zk+1). The key idea is to
choose the zk’s so that all n sections, including the unbounded one on the bottom,
have the same area. There are other algorithms that approximate the area under
the pdf with rectangles. The distinguishing features of Marsaglia’s algorithm are
the facts that the rectangles are horizontal and have equal areas.

0.00 0.74 1.03 1.26 1.49 1.72 1.98 2.34

0.06

0.14

0.23

0.33

0.45

0.59

0.76

1.00

Figure 9.2. The ziggurat algorithm.

For a specified number, n, of sections, it is possible to solve a transcendental
equation to find zn, the point where the infinite tail meets the first rectangular
section. In our picture with n = 8, it turns out that zn = 2.34. In an actual code
with n = 128, zn = 3.4426. Once zn is known, it is easy to compute the common

9.4. randtx, randntx 7

area of the sections and the other right-hand endpoints zk. It is also possible to
compute σk = zk−1/zk, which is the fraction of each section that lies underneath
the section above it. Let’s call these fractional sections the core of the ziggurat.
The right-hand edge of the core is the dotted line in our picture. The computation
of these zk’s and σk’s is done in initialization code that is run only once.

After the initialization, normally distributed random numbers can be com-
puted very quickly. The key portion of the code computes a single random integer,
j, between 1 and n and a single uniformly distributed random number, u, between
−1 and 1. A check is then made to see if u falls in the core of the jth section. If it
does, then we know that uzj is the x-coordinate of a point under the pdf and this
value can be returned as one sample from the normal distribution. The code looks
something like this.

j = ceil(128*rand);
u = 2*rand-1;
if abs(u) < sigma(j)

r = u*z(j);
return

end

Most of the σj ’s are greater than 0.98, and the test is true over 97% of the time.
One normal random number can usually be computed from one random integer, one
random uniform, an if-test, and a multiplication. No square roots or logarithms are
required. The point determined by j and u will fall outside the core less than 3% of
the time. This happens if j = 1 because the top section has no core, if j is between
2 and n−1 and the random point is in one of the little rectangles covering the graph
of f(x), or if j = n and the point is in the infinite tail. In these cases, additional
computations involving logarithms, exponentials, and more uniform samples are
required.

It is important to realize that, even though the ziggurat step function only
approximates the probability density function, the resulting distribution is exactly
normal. Decreasing n decreases the amount of storage required for the tables and
increases the fraction of time that extra computation is required, but does not affect
the accuracy. Even with n = 8, we would have to do the more costly corrections
almost 23% of the time, instead of less than 3%, but we would still get an exact
normal distribution.

With this algorithm, Matlab 6 can generate normally distributed random
numbers as fast as it can generate uniformly distributed ones. In fact, Matlab on
an 800 MHz Pentium laptop can generate over 10 million random numbers from
either distribution in less than one second.

9.4 randtx, randntx
Our NCM M-file collection includes textbook functions randtx and randntx. For
these two functions, we have chosen to fully reproduce the behavior of the corre-
sponding Matlab built-in functions rand and randn. The two textbook functions
use the same algorithms and produce the same results (to within roundoff error) as

8 Chapter 9. Random Numbers

the two built-in functions. All four functions—rand with or without an n and with
or without a tx—have the same usage. With no arguments, the expression randtx
or randntx generates a single uniformly or normally distributed pseudorandom
value. With one argument, the expression randtx(n) or randntx(n) generates an
n-by-n matrix. With two arguments, the expression randtx(m,n) or randntx(m,n)
generates an m-by-n matrix.

It is usually not necessary to access or set the internal state of any of the gener-
ators. But if you want to repeat a computation using the same sequence of pseudo-
random numbers, you can reset the generator state. By default, a generator starts
at the state set by randtx(’state’,0) or randntx(’state’,0). At any point dur-
ing a computation, you can access the current state with s = randtx(’state’) or
s = randntx(’state’). You can later restore that state with randtx(’state’,s)
or randntx(’state’,s). You can also set the state with randtx(’state’,j) or
randntx(’state’,j), where j is a single integer in the range 0 ≤ j ≤ 231− 1. The
number of states that can be set by a single 32-bit integer is only a tiny fraction of
the total number of states.

For the uniform generator randtx, the state s is a vector with 35 elements.
Thirty-two of the elements are floating-point numbers between 2−53 and 1− 2−53.
The other three elements in s are small integer multiples of eps. Although they
cannot all be reached from default initial settings, the total number of possible bit
patterns in the randtx state is 2 · 32 · 232 · 232·52, which is 21702.

For the normal generator randntx, the state s is a vector with two 32-bit
integer elements, so the total number of possible states is 264.

Both generators have setup calculations that are done only when the generator
is first used or reset. For randtx, the setup generates the initial floating-point
numbers in the state vector one bit at a time. For randntx, the setup computes
the breakpoints in the ziggurat step function.

After the setup, the principal portion of the uniform generator randtx is

U = zeros(m,n);
for k = 1:m*n

x = z(mod(i+20,32)+1) - z(mod(i+5,32)+1) - b;
if x < 0

x = x + 1;
b = ulp;

else
b = 0;

end
z(i+1) = x;
i = i+1;
if i == 32, i = 0; end
[x,j] = randbits(x,j);
U(k) = x;

end

This takes the difference between two elements in the state, subtracts any carry bit
b from the previous calculation, adjusts the result if it is negative, and inserts it

9.4. randtx, randntx 9

into the state. The auxiliary function randbits does an XOR operation between
the fraction of the floating-point number x and the random integer j.

10 Chapter 9. Random Numbers

After the setup, the principal portion of the normal generator randntx is

R = zeros(m,n);
for k = 1:m*n

[u,j] = randuni;
rk = u*z(j+1);
if abs(rk) < z(j)

R(k) = rk;
else

R(k) = randntips(rk,j,z);
end

end

This uses a subfunction randuni to generate a random uniform u and a random
integer j. A single multiplication generates a candidate result rk and checks to see
if it is within the “core” of the ziggurat. Almost all of the time it is in the core and
so becomes an element of the final result. If rk is outside the core, then additional
computation must be done by the auxiliary subfunction randtips.

Exercises
9.1. The number 13 is usually regarded as unlucky. However,

rand(’state’,13)
randgui rand

produces a surprisingly lucky result. What is that result?
9.2. Modify randgui so that it computes π using a circle inside a square instead

of a sphere inside a cube.
9.3. In randgui, change the statement

X = 2*feval(randfun,3,m)-1;

to

X = 2*feval(randfun,m,3)’-1;

We’ve interchanged 3 and m, and inserted a matrix transpose operator. With
this change,

randgui randssp

no longer demonstrates the defect in randssp. Explain why.
9.4. A very fast random number generator can be based on an irrational number

such as the golden ratio

φ =
1 +

√
5

2
.

Exercises 11

The sequence xn in the interval 0 < xn < 1 is generated simply by

xn = fractional part(nφ).

You can generate this sequence by repeatedly executing the statement

x = rem(x + phi, 1)

This generator passes a few statistical tests, but does poorly on most.
(a) Write a Matlab function randphi, in the style of randmcg and randssp,
that implements this generator.
(b) Compare the histograms of randmcg, randssp, and randphi. Use 10,000
samples and 50 bins. Which of the generators has the “best” uniform distri-
bution?
(c) How well does

randgui randphi

compute π? Why?
9.5. The M-files randtx.m and randntx.m include an internal function randint

that employs a sequence of bit shifts to produce random integers.
(a) Write a Matlab function randjsr, in the style of randmcg, that uses
the shift register integer generator to produce uniformly distributed floating-
point numbers.
(b) Compare the histogram of your randjsr with the histogram of randtx.
You should find that the two histograms have the same appearance.
(c) Verify that

randgui randjsr

does a good job of computing π.
9.6. Write an M-file randnpolar.m that generates normally distributed random

numbers using the polar algorithm described in section 9.3, Normal Distrib-
ution. Verify that your function produces the same kind of bell curve shaped
histograms as randn and randntx.

9.7. The NCM M-file brownian plots the evolution of a cloud of particles that
starts at the origin and diffuses in a two-dimensional random walk, modeling
the Brownian motion of gas molecules.
(a) Modify brownian.m to keep track of both the average and the maximum
particle distance from the origin. Using loglog axes, plot both sets of dis-
tances as functions of n, the number of steps. You should observe that, on
the log-log scale, both plots are nearly linear. Fit both sets of distances with
functions of the form cn1/2. Plot the observed distances and the fits, using
linear axes.
(b) Modify brownian.m to model a random walk in three dimensions. Do the
distances behave like n1/2?

9.8. The term Monte Carlo simulation refers to the use of pseudorandom numbers
in computational models of stochastic or probabilistic phenomena. The NCM

12 Chapter 9. Random Numbers

M-file blackjack provides an example of such a simulation. The program
simulates the card game, either one hand, or thousands of hands, at a time,
and collects payoff statistics.
In blackjack, face cards count 10 points, aces count 1 or 11 points, and all
other cards count their face value. The objective is to reach, but not exceed,
21 points. If you go over 21, or “bust,” before the dealer, you lose your bet
on that hand. If you have 21 on the first two cards, and the dealer does not,
this is “blackjack” and is worth 1.5 times the bet. If your first two cards are
a pair, you may “split” the pair by doubling the bet and use the two cards
to start two independent hands. You may “double down” after seeing the
first two cards by doubling the bet and receiving just one more card. “Hit”
and “draw” mean take another card. “Stand” means stop drawing. “Push”
means the two hands have the same total.
The first mathematical analysis of blackjack was published in 1956 by Bald-
win, Cantey, Maisel, and McDermott [4]. Their basic strategy, which is also
described in many more recent books, makes blackjack very close to a fair
game. With basic strategy, the expected win or loss per hand is less than 1%
of the bet. The key idea is to avoid going bust before the dealer. The dealer
must play a fixed strategy, hitting on 16 or less and standing on 17 or more.
Since almost one third of the cards are worth 10 points, you can compare
your hand with the dealer’s under the assumption that the dealer’s hole card
is a 10. If the dealer’s up card is a 6 or less, she must draw. Consequently,
the strategy has you stand on any total over 11 when the dealer is showing
a 6 or less. Split aces and split 8’s. Do not split anything else. Double down
with 11, or with 10 if the dealer is showing a 6 or less. The program displays
the recommended basic strategy play for each situation in red. The complete
basic strategy is defined by three arrays, HARD, SOFT, and SPLIT, in the code.
A more elaborate strategy, called card counting, can provide a definite math-
ematical advantage. Card-counting players keep track of the cards that have
appeared in previous hands, and use that information to alter both the bet
and the play as the deck becomes depleted. Our simulation does not involve
card counting.
Our blackjack program has two modes. The initial bet for each hand is
$10. “Play” mode indicates the basic strategy with color, but allows you
to make other choices. “Simulate” mode plays a specified number of hands
using the basic strategy and collects statistics. One graph shows the total
stake accumulated over the duration of the simulation. Another graph shows
the observed probabilities of the ten possible payoffs for each hand. These
payoffs include zero for a push, win $15 for a blackjack, win or lose $10 on
a hand that has not been split or doubled, win or lose $20 on hands that
have been split or doubled once, and win or lose $30 or $40 on hands that
have been doubled after a split. The $30 and $40 payoffs occur rarely (and
may not be allowed at some casinos) but are important in determining the
expected return from the basic strategy. The second graph also displays with
0.xxxx ± 0.xxxx the expected fraction of the bet that is won or lost each
hand, together with its confidence interval. Note that the expected return

Exercises 13

is usually negative, but within the confidence interval. The outcome in any
session with less than a few million hands is determined more by the luck of
the cards than by the expected return.
(a) How many decks of cards are used in our blackjack program? How is
the deck represented and how is it shuffled? How are the cards dealt? What
role does rand play?
(b) What is the theoretical probability of getting blackjack from a freshly
shuffled deck? In other words, the player has 21 on the first two cards and
the dealer does not. How does this compare with the probability observed in
the simulation?
(c) Modify blackjack so that blackjack pays even money instead of 1.5 times
the bet. How does this affect the expected return?
(d) In some casinos, a “push” is regarded as a loss. Modify blackjack to use
such a rule. How does this affect the expected return?
(e) Modify blackjack to use four artificial 56-card decks that have twice as
many aces as usual. How does this affect the expected return?
(f) Modify blackjack to use four artificial 48-card decks that do not have
any kings. How does this affect the expected return?

14 Chapter 9. Random Numbers

Bibliography

[1] G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Math-
ematical Computations, Prentice–Hall, Englewood Cliffs, NJ, 1977.

[2] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software,
Prentice–Hall, Englewood Cliffs, NJ, 1989.

[3] C. Moler, Numerical Computing with MATLAB,
Electronic edition: The MathWorks, Inc., Natick, MA, 2004.
http://www.mathworks.com/moler
Print edition: SIAM, Philadelphia, 2004.
http://ec-securehost.com/SIAM/ot87.html

[4] R. Baldwin, W. Cantey, H. Maisel, and J. McDermott, The optimum
strategy in blackjack, Journal of the American Statistical Association, 51 (1956),
pp. 429–439.

[5] D. E. Knuth, The Art of Computer Programming: Volume 2, Seminumerical
Algorithms, Addison–Wesley, Reading, MA, 1969.

[6] G. Marsaglia, Random numbers fall mainly in the planes, Proceedings of the
National Academy of Sciences, 61 (1968), pp. 25–28.

[7] G. Marsaglia and W. W. Tsang, A fast, easily implemented method for
sampling from decreasing or symmetric unimodal density functions, SIAM Jour-
nal on Scientific and Statistical Computing 5 (1984), pp. 349–359.

[8] G. Marsaglia and W. W. Tsang, The ziggurat method for generating ran-
dom variables, Journal of Statistical Software, 5 (2000), pp. 1–7.
http://www.jstatsoft.org/v05/i08

[9] G. Marsaglia and A. Zaman, A new class of random number generators,
Annals of Applied Probability, 3 (1991), pp. 462–480.

[10] S. K. Park and K. W. Miller, Random number generators: Good ones are
hard to find, Communications of the ACM, 31 (1988), pp. 1192–1201.

15

