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Tailbiting MAP Decoders

John B. Andersonkellow, IEEE and Stephen M. Hladikviember, IEEE

Abstract—We extend the MAP decoding algorithm of Bahlet
al. to the case of tailbiting trellis codes. An algorithm is given
that is based on finding an eigenvector, and another that avoids
this. Several examples are given. The algorithm has application
to turbo decoding and source-controlled channel decoding.

Index Terms—Decoding, iterative decoding, MAP decoding,
trellis decoding.

I. INTRODUCTION

HE calculation of probability information, or “soft out-
put,” during data decoding is the object of a MAP
i iori ili . ki f

(maXImum a p_osterlorl pI’ObabI I-ty) decoder. One kind o 0F . 1. Example of circular tailbiting trellis with four states.

MAP decoder is the BCJR algorithm, named after the auth rg

0{ an r(]aarly paper [1(]1 tha;[j pr?poseclil_the zchem%. The Bkctlg a path around a circular trellis, as shown in Fig. 1 for a

algorithm is a MAP decoder for tre_ls codes and a Markojf ur-state trellis. An early paper with a full explanation of

data source. The scheme’s output is the probability of e Ibiting is Ma and Wolf [6]

trellis state at each stage, given the observed channel outputs; process a received tréllis codeword. a BCJR decoder

alternately, the output can be the probability of each tre"}ﬁust begin from the conditional distributions of the start and

:jransmon. Frpm th|bs tl)(llfqrma_tllﬁn ;ggRbel den\r/]edlmg_mldu nd state, given the observed channel output; these two states
ataa posterioriprobabilities. The algorithm s distinct, o hoih state 0 with probability 1 in terminated decoding.

from the Viterbi algorithm, which determines the most likely;, 5 tailbiting codeword, the distributions are unknown.
sequencef trellis states. The BCJR algorithm is a compone lthough a BCJR decoder could begin here with uniform start

in iterative decoding methods, such as turbo decoding [4] apfy end distribution&l /M, - - -, 1/M), with M the number of
replication decoding [5], which pass likelihood information, L §

bet s of the decoding in the f  stat q lzR]ates, the result would be inferior to working with an (as yet
p?o\é)vzt?iﬂti%asr S ot the decoding In the form of state and Sym calculated) true distribution of the first trellis state. In this

The alorith . in d all of it licati paper, we extend BCJR to the case where meaningful start and
e aigorithm given In [ ].’ and afl ot IS -applicalionSg 4 giate distributions are unknown at the outset. Our schemes
until now, require that the distribution of the starting anﬁ]

ding trellis states be k t least ianed eriori us allow tailbiting to be applied in iterative decoding and
ending treflis states be known, or at least assignee pnori — jo oding witha priori source data probabilities, as has been
probability. Usually, a state such as the O state is as&gquaxf

H 2]. Tailbiti Il h h
probability 1 at both ends of the trellis. Forcing the encod posed by Hagenauer [2]. Tailbiting allows these methods

trelli th t tain state at th 4 of decoding i I be used with short codes without rate loss. We present the
refiis path 1o a certain state at the end ot decoding Is ca %gsic algorithm and two practical extensions in Sections Il and

terminating the path. Forcing is accomplished by transmittir[ﬂ and give examples of their application in Section IV

known trellis branches, a procedure that reduces the encoding '

rate, particularly if the block length is short. Without path II. THE TAILBITING BCJR ALGORITHM

termination, a decoder has a weaker error probability near th

engnofalttr; ernifis/zd?: sequence. (probabilities that a state: is sent at timet, given that the
path termination that does not redu & d ch | output .. e that is. it seek

the rate or degrade the error probability is tailbiting. (FOServed channel oulpuls &g - -+, yz; that 1S, It Seeks

this encoding technique, the start and end encoder states are Pr{S, =i|Y}"} 1)
constrained to be identical; that is, a trellis codeword staffghere S, = i denotes the event that the encoder is in state
from the state at which it will eventually end. The state is at trellis staget, and Y;* is shorthand for the variables
otherwise unknowra priori. The transmission can be viewedy; ... y; . Note thatY;” applies to stage, and in the case
Manuscript received September 10, 1996; revised May 2, 1997. This paogrﬂple rat81/a Con\_mluponal encoders_a an integer, that are
was presented in part at the IEEE International Symposium on Informatig@ed as examples in this papgrcomprises: channel outputs.

eI'he object of the basic BCJR algorithm is to compute the

Theory, Ulm, Germany, July 1997. Instead of finding (1), BCJR actually finds
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Following [1], we define three sets of working probabilitiesdata bit. The factoPr{Y;|i — j} becomes the probability of
Itis convenient to express these as matrices and vectors. Defirget ofa channel outputs, given the set@encoder outputs.
the matrix We turn now to the new tailbiting BCJR algorithm. Now,
Iy (i, 5) A Pr{S, = 4,Y}|Si_1 = i}, t=1,---,L (3) %o is unkr!own and must be computed by the algorithm. The

new algorithm depends on the fact that

wherei, j run over theM states. Define the row vector
a,L1---Tp

a(i) 2 Pr{S, =4, Yy,  t=1,---,L 4) T Th Yy (11)
Define the column vector To prove this, we begin with an arbitrary starting distribution
B:(5) A Pr{YfHISt _ j}, t=1,---.L—1. (5) and iterate (6)L times, to get
aL:aofl---FL. (12)

TheI; function is the input to the algorithm, ang and 3,
are computed during the progress of the algorithm. GivenEguation (12) holds for any starting distribution. Consider a

set ofI';, the steps of the basic BCJR are as follows. particular one, namely
1) Form the row vectorsy, -- -, g, by theforward recur- o =Pr{S, = j|Y1L} =Pr{S, =, YlL}/Pr{YlL}
sion

which is the distribution ofS, given all of the observed
= a1y, t=1,---,L. (6) channel outputs. Because of tailbitin§j, = S, so that

PI‘{SOIj,YiL}:Pr{SLIj,YiL}IOéL(j), a”J

2) Form the column vectors;,_+,- - -, 3; by thebackward
recursion Consequently
Br = Ley1Pe41, t=L—-1,---,1. (7) Pr{Y }a, =ap =a,I1 - -Tf.
3) Form the row vectors\, -- -, Az, by It is assumed that’; ---I'y satisfies certain regularity

conditions; some of these are given in Section IV.

Before listing the algorithm, we comment further on the so-
lution of (11). From (11), is the normalized left eigenvector
Here, the operator-* means component-by-component multiof the matrixT'; ---I';, /Pr{Y¥;*} for which the eigenvalue is
plication. From the\;, Pr{S, = i[Y;"} = A,(¢)/Pr{Y*} may 1. Such an eigenvalue must exist because (11) is an equation
be found by formingy; Pr{S; = ¢,Y{"} = %; A(4), which  of probabilities; furthermore, no larger eigenvalue can exist
is Pr{Y{"}. (see, for example, [3]). Equivalently, is the eigenvector of

For the recursions (6) and (7) to applytat 1 andL — 1, the largest eigenvalue df; ---I';, and its eigenvalue must
respectively, it must be that, () is the probability the encoder be pr{y;*}. However, we need not explicitly fingr{Y;"}
starts in state before stage 1 and.(j) is the probability it in order to finde,, and it is convenient not to sinder{Y;*}
ends in statg after stagel.. In the standard application of thepecomes very small ab grows. For example, as the product
BCJR algorithmg, = (1,0, - - -, 0) initializes the forward and T, ... T, is built up step by step, we can scale by a convenient
Br = (1,0,---,0) initializes the backward recursion; thesdactor at each step in order to keep the matrix elements at a
are equivalent to assuming that the encoder starts and endgebsonable size. The direction of the eigenvector will remain
state 0. Note that the sum of the components obvarms the unchanged, and at the end, the vector can be scaled to unit size.
probability thatY?" is observed; if the vector is normalized tosome further simplification comes from the fact that we seek
unit sum, it becomes the probability of the states at time only the largest eigenvalue eigenvector and thaftneatrices
given the observation; up tot. The BCJR also computesare very sparse. For both of these reasons, the eigensolution by
the probability of a state transition fromto j during stage no means has the complexity of the full eigenvector problem

)\t:at'ﬁtv t:]-va (8)

t; this is given by [3].
oo(i — §) A Pr{St_l =4,S, = j, YlL} _ One detail r_e_rr_1ains, the initializing of the backward recur-
. . . sion. Several initiaj3;, have been proposed. We will argue in
= -1 (OL'4(4, 7)) ®) 4 forthcoming paper devoted to convolutional MAP decoding
That A and o are truly the probabilities claimed is proven inthat theright eigenvector ofl’; ---I';, is the proper starting
[1]. vector in most applications.

The BCJR procedure assumes that the trellis evolves in
a Markov fashion and that the channel noise is memory-
less. Under such assumptions, the probabilityi, 7) in (3) o )
becomes Al: The Tailbiting BCJR Algorithm
Pr{S, = ,Y:|Se_1 = 1} We incorporate_ t_h_ese fa_cts into a proc_edure to find
. o ) A1, -+, A for a tailbiting trellis. The scheme finds and uses

= Pr{Y;, trellis transitioni — j} Pr{Y{'}; Algorithm A2 to follow avoids this.

= Pr{Yi|i — j} Pr{i — j}. (10)  Givenyy, -, yz.
In Section IV, we specialize (10) to ratga convolutional 1) Find the left eigenvector corresponding to the largest
codes; then the state transitions are driven by binary data eigenvalue of’; ---I'y; scale it to sum to unity. This is
symbols, an®r{i — j} becomes the priori probability of a a,. The eigenvalue iPr{Y{"}.
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2) Fprm the row vectors, - - -, ar, by the forward recur- et ag(m) = ar(m).
sion ) .
Begin comparing o; on current pass
oy = a1, t=1,---,L—1. with o; obtained on previous pass.
3) Form the column vectors,_i, - - -, 3 by the backward  LReplace previous a(m).
recursion

B = Ley1 P41, t=L-1,.--.1
with 8 equal the right eigenvector af; ---I'f.
4) Form)\t = 'ﬁt,t = 1,"',L.
From A, may be found’r{S; = i|Y;*} as explained before,
and (¢ — j) may be found as in (9).

In most BCJR application®r{Y;"} is used only to scale Increasing
A. When Pr{Y} is not explicitly required, the following trellis level
procedure, which uses successive renormalizations, contro
the precision of the calculations and leads to the identical
Pr{S, = i|Y;L}. The scheme depends on the fact that scaling
of any or all of theay, 3;, or I'; during recursions (6) or (7)
simply leads to scaled; in (8); butPr{S, = i|Y/L} is always
available by normalizing\; to have unit sum.

In what follows, thea; and 3; are renormalized to unit
sum at every recursion step; the superscrigt ihdicates a lterative calculation of &'s terminates
unit-sum vector. when oj from current pass is suitably

close to g; obtained on previous pass.

A2: Tailbiting BCJR Algorithm (with Renormalizing) ) o o )
Fig. 2. Time line for tailbiting BCJR decoder Algorithm A3. All alphas are
Given yi, -+, yrL. renormalized to unit sum.
1) Find the left eigenvector corresponding to the largest

eigenvalue ofl'; ---I'y. This is «,. Do not find the S o ]
eigenvalue. Any renormalizing is allowed during the A more precise justification of this is as follows. Define

calculation. G = K,I'1---I';, where K, is a normalization chosen to
2) Form the normalized row vectors), - - -, a§ by repeat- make the largest eigenvalue Gfequal to one K, will scale
ing the recursion the length of the largest eigenvector, but leave it otherwise

unchanged. Start the recursion with some starting distribution
«,. After L iterations, we obtain

af:at/Zat(i), tI].,"',L—].. OCEIKOFI"'FL@O:G@O

3) Starting from the right eigenvector as in A2, form thé"’he“yr denotes th%t thm% is scaled byk,. The sgt of
- . iterations producesyi,---,«} . Another set ofL iterations
normalized column vectors by repeating

i produces a second saf,_,,--,a};, and so on to theith
P =T fl set. (Takel', = I',,, with m = nmodL.) The sequence
tab e al limit, and after
3 _ 3 5,05). f= L1, 1. Qo Qp, yp, o+, MUSt converge to a limit,
P /t/zj:/t(‘]) normalization, this limit is the unit sum,. Similarly, the set
4) Form al, r ol after normalizing converges te, - - -, 5 in
o o Algorithm A2,
Av =y - By Some choices of the initiak, will lead to faster conver-
A° =)\ Aeli), t=1,--.,L. gence than others, and in the absencg of bettgr knpwlgdge,
i t/z; () a, = (1/M,---,1/M) seems a good choice. The justification

just given makes it seem that a numberiotycles might be

Ill. A TALBITING BCJR WITHOUT THE EIGENVECTOR required for convergence, but in reality, the forward recursion

The renormalizing scheme just presented contains within“iprgets” an erroneous starting, very rapidly. Fig. 2 shows
a way to avoid an explicit solution for an eigenvector. The fattow the forward recursion wraps around the trellis a second
is that if we iterate the forward recursion (6) enough times attigne; the extra trellis search required beforecat,, becomes
properly renormalize the outcomes, then the resulting sequentese to a first roundy; is called thewrap depth W. It is a
of outcomesay, s, -+, ap, g1, -, @2, @ary1,--- Will  fraction of L in most applications. The basic iterations in A3
converge to repetitions @f¢, - - -, .. This is because repeatedare the same as in the original BCJR, so that A3’s complexity
multiplication of a vector by a matrix7 gives a vector is a factor(W + L)/L greater than the standard BCJR.
that converges in ratio to7 . v, where A, is the largest By a similar argument, a recursion backward around the
eigenvalue ofZ andw is its eigenvector (see [3]). circle will converge to the desired sgf,-- -, 59.
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Stage Alpha
1 0.696 0.044 0.216 0.044
2 0.192 0.506 0.192 0.110 Stage P{data=0}
3 0.168 0.420 0.168 0.243
4 0.252 0.066 0.615 0.066 1 0.551
5 0.534 0.160 0.147 0.160 2 0.551
3 0.920
4 0.571
Stage Beta’ 5 0.920
1 0.168 0.168 0.420 0.243
2 0.192 0.192 0.506 0.110
3 0.696 0.216 0.044 0.044
4 0.534 0.147 0.160 0.160
5 0.252 0.615 0.066 0.066
Stage Lambda
1 0.518 0.033 0.401 0.047
2 0.152 0.399 0.399 0.049
3 0.518 0.401 0.033 0.047
4 0.532 0.038 0.387 0.042
5 0.532 0.387 0.038 0.042
(b)
Fig. 3. (a) Trellis section for the first example. (b) Output of Algorithm Al, after normalizing.

is shown in Fig. 3 with the data symbols that attach to each
transition. The sequence 00 10 10 00 00 is received. IThe
matrices are

The new algorithm is as follows.

A3: Tailbiting BCJR Algorithm (Without Eigenvectors)

Giveny,---,yr, takea, = (1/M,---,1/M). I, =, =T,
1) Find a set of renormalized row vectar§,- - -, o} by r0.5(1 — p)? 0 5p? 0 -
the recursion 0.5p2 0 0.5(1 — p)? 0
ar = a1l B 0 5p(1 —p) 0 5p(1 —p)
, L0 0.5p(1 - p) 0 0.5p(1 = p)
OéI:Oét/ZOét('L), t:]-va ]_“2:1“3
z 05p(1—p) 0 O05p(l—p) 0 7
Continue this recursion to find] ¢ = L+1,L+2,- - -, ~10.5p(1 = p) 0 0.5p(1 — p) 0
takingT'; = I',,, wheren = tmod L. When||o] — || - 0 0.5(1 — p)? 0 0.5p2
is sufficiently small by a suitable measure, stop. A L 0 0.5p2 0 0.5(1 — p)2 |

complete set of vectors is available as the lasfound. ) _
2) Execute a similar procedure backward around the trel!isStepsl) of 'f‘l yields Elzat the largest eigenvalud’ef - - I';
circle, to find the seps], -, 3. is P{YP} = 5.39 x 107* and

The remainder of the algorithm is the same as A2, step 4). @ = (0.534 0.1596 0.1468 0.1596)

IV. EXAMPLES after normalizing. The outcome of steps 2)—4) is summarized
The first example features a BSC with crossoyee 0.1 in Fig. 3. Thes can be found as well, and the probabilities of

and a four-state trellis comprising five sections, one of whiatata 1 or O in the transmission; the last appear in the figure.
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Measured Bit Error Rate

Eb/No in dB

Fig. 4. Bit-error rates for four decoders working with tlie= 1/2 memory 6 code (554, 744). = 48 stages; tailbiting decoders use a 40-stage wrap
depth. The tailbiting BCJR decoder puts out the most probable bit at each stage. Theoretical bit-error estimates with and without coding ardisgown; co
estimate is based on the first six terms of the transfer function BER bound.

Measured Bit Error Rate

1 1.5 2 2.5 3 35 4
Eb/No in dB

Fig. 5. Bit-error rates versug; /N, for the tailbiting BCJR decoder when the source bit statistics are biased. The decoder puts out the data bit with
the highest probability at each stage.

In this example, a five-stage code word 00000 was probablyln example 2, we turn to the antipodal-signaling AWGN
sent. The example can be repeated with a longer trellis or evdrannel and the best free-distance 64-state convolutional code
with a very short one as long as it describes a valid tailbitingith rate 1/2. The tailbiting trellis has 48 stages, and the wrap
trellis code. Valid means that the encoder Markov chain depth is 40 extra stages. Fig. 4 compares an unterminated and
irreducible, and that any entire matrix sequerée---I';, terminated standard Viterbi decoder (note that the terminated
starts and ends with the same states. VA curve is moved to the right by the energy loss to the
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termination bits); also shown are a tailbiting VA decoder and4] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
the tailbiting BCJR decoder of Algorithm A3. It is clear that ~ decoding: Turbo-codes|EEE Trans. Communvol. 44, pp. 1261-1271,

LT . Oct. 1996.
the two tailbiting decoders are superior for these short bloclg) G gattail et al, “Replication decoding,1EEE Trans. Inform. Theory
lengths. vol. IT-25, pp. 332-345, May 1979.

Fig. 4 assumes that the data bits are equiprobable. whé§] H- H. Ma and J. K. Wolf, “On tail biting convolutional codes|EEE
o ) o Trans. C nvol. COM-34, pp. 104-111, Feb. 1986.

they are not, the tailbiting BCJR decoder gains a significant rans. ommun-ve PP ©

advantage over the tailbiting VA. ThE matrices are now

modified (Pr{¢ — j} in (10) is changed from 0.5 to the .

probability of the data bit causing the respective transitior%?h” B. Anderson (M'72-SM'82-F'87), for a photograph and biography,
. .. . ee this issue, p. 195.

Fig. 5 compares the 0.5/0.5 data distribution case to the

skewed distributions 0.67/0.33 and 0.91/0.09.

V. CONCLUSIONS

We have demonstrated several algorithms that apply the idea Stephen M. Hiadik (S'83-M'89) received the B.S.

of MAP decoding to tailbiting coding systems. Algorithm A3 and M.S. degrees in electrical engineering from
is perhaps the most practical since, in our experience, it grr]lign élollege_, Stl:hetnectlady,_NY, in 1f985 gnd the
. y .D. degree In electrical engineering frrom Rensse-
the uspal BCJR schgme vy|th a moderately extendgd forwe T laer Polytechnic Institute, Troy, NY, in 1989,
recursion. The algorithms in this paper apply especially wh -l From 1985 to 1986, he worked at Eastman Ko-
trellis codes are short, so that their rates are reduced 1 E dak's U.S. Apparatus Division in Rochester, NY,
.-p/ where he was involved in the development of an

much by known-bit termination, or whenevarpriori source
probabilities are skewed. We foresee applications to turl
decoding with relatively short blocks and to source-controll
channel decoding.

electronic still image camera and player/recorder.
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