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Tailbiting MAP Decoders
John B. Anderson,Fellow, IEEE, and Stephen M. Hladik,Member, IEEE

Abstract—We extend the MAP decoding algorithm of Bahlet
al. to the case of tailbiting trellis codes. An algorithm is given
that is based on finding an eigenvector, and another that avoids
this. Several examples are given. The algorithm has application
to turbo decoding and source-controlled channel decoding.

Index Terms—Decoding, iterative decoding, MAP decoding,
trellis decoding.

I. INTRODUCTION

T HE calculation of probability information, or “soft out-
put,” during data decoding is the object of a MAP

(maximum a posteriori probability) decoder. One kind of
MAP decoder is the BCJR algorithm, named after the authors
of an early paper [1] that proposed the scheme. The BCJR
algorithm is a MAP decoder for trellis codes and a Markov
data source. The scheme’s output is the probability of each
trellis state at each stage, given the observed channel outputs;
alternately, the output can be the probability of each trellis
transition. From this information can be derived individual
dataa posterioriprobabilities. The BCJR algorithm is distinct
from the Viterbi algorithm, which determines the most likely
sequenceof trellis states. The BCJR algorithm is a component
in iterative decoding methods, such as turbo decoding [4] and
replication decoding [5], which pass likelihood information
between parts of the decoding in the form of state and symbol
probabilities.

The algorithm given in [1], and all of its applications
until now, require that the distribution of the starting and
ending trellis states be known, or at least assigned ana priori
probability. Usually, a state such as the 0 state is assigned
probability 1 at both ends of the trellis. Forcing the encoded
trellis path to a certain state at the end of decoding is called
terminating the path. Forcing is accomplished by transmitting
known trellis branches, a procedure that reduces the encoding
rate, particularly if the block length is short. Without path
termination, a decoder has a weaker error probability near the
end of the decoded sequence.

An alternative to path termination that does not reduce
the rate or degrade the error probability is tailbiting. In
this encoding technique, the start and end encoder states are
constrained to be identical; that is, a trellis codeword starts
from the state at which it will eventually end. The state is
otherwise unknowna priori. The transmission can be viewed
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Fig. 1. Example of circular tailbiting trellis with four states.

as a path around a circular trellis, as shown in Fig. 1 for a
four-state trellis. An early paper with a full explanation of
tailbiting is Ma and Wolf [6].

To process a received trellis codeword, a BCJR decoder
must begin from the conditional distributions of the start and
end state, given the observed channel output; these two states
are both state 0 with probability 1 in terminated decoding.
With a tailbiting codeword, the distributions are unknown.
Although a BCJR decoder could begin here with uniform start
and end distributions with the number of
states, the result would be inferior to working with an (as yet
uncalculated) true distribution of the first trellis state. In this
paper, we extend BCJR to the case where meaningful start and
end state distributions are unknown at the outset. Our schemes
thus allow tailbiting to be applied in iterative decoding and
decoding witha priori source data probabilities, as has been
proposed by Hagenauer [2]. Tailbiting allows these methods
to be used with short codes without rate loss. We present the
basic algorithm and two practical extensions in Sections II and
III, and give examples of their application in Section IV.

II. THE TAILBITING BCJR ALGORITHM

The object of the basic BCJR algorithm is to compute the
probabilities that a state is sent at time given that the
observed channel outputs are that is, it seeks

(1)

where denotes the event that the encoder is in state
at trellis stage and is shorthand for the variables

Note that applies to stage and in the case
of the rate- convolutional encoders, an integer, that are
used as examples in this paper,comprises channel outputs.
Instead of finding (1), BCJR actually finds

(2)

which is the product of (1) and the probability that
is observed.

0733–8716/98$10.00 1998 IEEE



298 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Following [1], we define three sets of working probabilities.
It is convenient to express these as matrices and vectors. Define
the matrix

(3)

where run over the states. Define the row vector

(4)

Define the column vector

(5)

The function is the input to the algorithm, and and
are computed during the progress of the algorithm. Given a
set of the steps of the basic BCJR are as follows.

1) Form the row vectors by the forward recur-
sion

(6)

2) Form the column vectors by thebackward
recursion

(7)

3) Form the row vectors by

(8)

Here, the operator “” means component-by-component multi-
plication. From the may
be found by forming which
is

For the recursions (6) and (7) to apply at and
respectively, it must be that is the probability the encoder
starts in state before stage 1 and is the probability it
ends in state after stage In the standard application of the
BCJR algorithm, initializes the forward and

initializes the backward recursion; these
are equivalent to assuming that the encoder starts and ends in
state 0. Note that the sum of the components of anis the
probability that is observed; if the vector is normalized to
unit sum, it becomes the probability of the states at time
given the observation up to The BCJR also computes
the probability of a state transition fromto during stage

this is given by

(9)

That and are truly the probabilities claimed is proven in
[1].

The BCJR procedure assumes that the trellis evolves in
a Markov fashion and that the channel noise is memory-
less. Under such assumptions, the probability in (3)
becomes

trellis transition

(10)

In Section IV, we specialize (10) to rate- convolutional
codes; then the state transitions are driven by binary data
symbols, and becomes thea priori probability of a

data bit. The factor becomes the probability of
a set of channel outputs, given the set ofencoder outputs.

We turn now to the new tailbiting BCJR algorithm. Now,
is unknown and must be computed by the algorithm. The

new algorithm depends on the fact that

(11)

To prove this, we begin with an arbitrary starting distribution
and iterate (6) times, to get

(12)

Equation (12) holds for any starting distribution. Consider a
particular one, namely

which is the distribution of given all of the observed
channel outputs. Because of tailbiting, so that

all

Consequently

It is assumed that satisfies certain regularity
conditions; some of these are given in Section IV.

Before listing the algorithm, we comment further on the so-
lution of (11). From (11), is the normalized left eigenvector
of the matrix for which the eigenvalue is
1. Such an eigenvalue must exist because (11) is an equation
of probabilities; furthermore, no larger eigenvalue can exist
(see, for example, [3]). Equivalently, is the eigenvector of
the largest eigenvalue of and its eigenvalue must
be However, we need not explicitly find
in order to find and it is convenient not to since
becomes very small as grows. For example, as the product

is built up step by step, we can scale by a convenient
factor at each step in order to keep the matrix elements at a
reasonable size. The direction of the eigenvector will remain
unchanged, and at the end, the vector can be scaled to unit size.
Some further simplification comes from the fact that we seek
only the largest eigenvalue eigenvector and that thematrices
are very sparse. For both of these reasons, the eigensolution by
no means has the complexity of the full eigenvector problem
[3].

One detail remains, the initializing of the backward recur-
sion. Several initial have been proposed. We will argue in
a forthcoming paper devoted to convolutional MAP decoding
that theright eigenvector of is the proper starting
vector in most applications.

A1: The Tailbiting BCJR Algorithm

We incorporate these facts into a procedure to find
for a tailbiting trellis. The scheme finds and uses

Algorithm A2 to follow avoids this.
Given

1) Find the left eigenvector corresponding to the largest
eigenvalue of scale it to sum to unity. This is

The eigenvalue is
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2) Form the row vectors by the forward recur-
sion

3) Form the column vectors by the backward
recursion

with equal the right eigenvector of
4) Form

From may be found as explained before,
and may be found as in (9).

In most BCJR applications, is used only to scale
When is not explicitly required, the following

procedure, which uses successive renormalizations, controls
the precision of the calculations and leads to the identical

The scheme depends on the fact that scaling
of any or all of the or during recursions (6) or (7)
simply leads to scaled in (8); but is always
available by normalizing to have unit sum.

In what follows, the and are renormalized to unit
sum at every recursion step; the superscript “” indicates a
unit-sum vector.

A2: Tailbiting BCJR Algorithm (with Renormalizing)

Given

1) Find the left eigenvector corresponding to the largest
eigenvalue of This is Do not find the
eigenvalue. Any renormalizing is allowed during the
calculation.

2) Form the normalized row vectors by repeat-
ing the recursion

3) Starting from the right eigenvector as in A2, form the
normalized column vectors by repeating

4) Form

III. A T AILBITING BCJR WITHOUT THE EIGENVECTOR

The renormalizing scheme just presented contains within it
a way to avoid an explicit solution for an eigenvector. The fact
is that if we iterate the forward recursion (6) enough times and
properly renormalize the outcomes, then the resulting sequence
of outcomes will
converge to repetitions of This is because repeated
multiplication of a vector by a matrix gives a vector
that converges in ratio to where is the largest
eigenvalue of and is its eigenvector (see [3]).

Fig. 2. Time line for tailbiting BCJR decoder Algorithm A3. All alphas are
renormalized to unit sum.

A more precise justification of this is as follows. Define
where is a normalization chosen to

make the largest eigenvalue of equal to one. will scale
the length of the largest eigenvector, but leave it otherwise
unchanged. Start the recursion with some starting distribution

After iterations, we obtain

where denotes that this is scaled by The set of
iterations produces Another set of iterations
produces a second set and so on to the th
set. (Take with .) The sequence

must converge to a limit, and after
normalization, this limit is the unit sum Similarly, the set

after normalizing converges to in
Algorithm A2.

Some choices of the initial will lead to faster conver-
gence than others, and in the absence of better knowledge,

seems a good choice. The justification
just given makes it seem that a number ofcycles might be
required for convergence, but in reality, the forward recursion
“forgets” an erroneous starting very rapidly. Fig. 2 shows
how the forward recursion wraps around the trellis a second
time; the extra trellis search required before an becomes
close to a first round is called thewrap depth, It is a
fraction of in most applications. The basic iterations in A3
are the same as in the original BCJR, so that A3’s complexity
is a factor greater than the standard BCJR.

By a similar argument, a recursion backward around the
circle will converge to the desired set
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(a)

(b)

Fig. 3. (a) Trellis section for the first example. (b) Output of Algorithm A1, after normalizing.

The new algorithm is as follows.

A3: Tailbiting BCJR Algorithm (Without Eigenvectors)

Given take

1) Find a set of renormalized row vectors by
the recursion

Continue this recursion to find
taking where When
is sufficiently small by a suitable measure, stop. A
complete set of vectors is available as the lastfound.

2) Execute a similar procedure backward around the trellis
circle, to find the set

The remainder of the algorithm is the same as A2, step 4).

IV. EXAMPLES

The first example features a BSC with crossover
and a four-state trellis comprising five sections, one of which

is shown in Fig. 3 with the data symbols that attach to each
transition. The sequence 00 10 10 00 00 is received. The
matrices are

Step 1) of A1 yields that the largest eigenvalue of
is and

after normalizing. The outcome of steps 2)–4) is summarized
in Fig. 3. The can be found as well, and the probabilities of
data 1 or 0 in the transmission; the last appear in the figure.
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Fig. 4. Bit-error rates for four decoders working with theR = 1/2 memory 6 code (554, 744).L = 48 stages; tailbiting decoders use a 40-stage wrap
depth. The tailbiting BCJR decoder puts out the most probable bit at each stage. Theoretical bit-error estimates with and without coding are shown; coding
estimate is based on the first six terms of the transfer function BER bound.

Fig. 5. Bit-error rates versusEb=No for the tailbiting BCJR decoder when the source bit statistics are biased. The decoder puts out the data bit with
the highest probability at each stage.

In this example, a five-stage code word 00000 was probably
sent. The example can be repeated with a longer trellis or even
with a very short one as long as it describes a valid tailbiting
trellis code. Valid means that the encoder Markov chain is
irreducible, and that any entire matrix sequence
starts and ends with the same states.

In example 2, we turn to the antipodal-signaling AWGN
channel and the best free-distance 64-state convolutional code
with rate 1/2. The tailbiting trellis has 48 stages, and the wrap
depth is 40 extra stages. Fig. 4 compares an unterminated and
terminated standard Viterbi decoder (note that the terminated
VA curve is moved to the right by the energy loss to the
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termination bits); also shown are a tailbiting VA decoder and
the tailbiting BCJR decoder of Algorithm A3. It is clear that
the two tailbiting decoders are superior for these short block
lengths.

Fig. 4 assumes that the data bits are equiprobable. When
they are not, the tailbiting BCJR decoder gains a significant
advantage over the tailbiting VA. The matrices are now
modified in (10) is changed from 0.5 to the
probability of the data bit causing the respective transition).
Fig. 5 compares the 0.5/0.5 data distribution case to the
skewed distributions 0.67/0.33 and 0.91/0.09.

V. CONCLUSIONS

We have demonstrated several algorithms that apply the idea
of MAP decoding to tailbiting coding systems. Algorithm A3
is perhaps the most practical since, in our experience, it is
the usual BCJR scheme with a moderately extended forward
recursion. The algorithms in this paper apply especially when
trellis codes are short, so that their rates are reduced too
much by known-bit termination, or whenevera priori source
probabilities are skewed. We foresee applications to turbo
decoding with relatively short blocks and to source-controlled
channel decoding.
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