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Abstract— In this paper we consider a space-time
differential modulation scheme where neither the
transmitter nor the receiver has to know the chan-
nel. Our scheme is based on the theory of unitary
space-time block codes. Compared to the existing
differential modulation schemes for multiple anten-
nas our scheme has a much smaller computational
complexity. Moreover our codes have a higher cod-
ing gain and lower Bit Error Rate than the codes
recently proposed by other researchers.

1. INTRODUCTION

Using transmitter diversity for wireless communi-
cations has recently attracted a lot of attention. A
simple transmitter diversity scheme using two trans-
mitter antennas was proposed by Alamouti in [1].
An extension to more than two transmitter anten-
nas was presented in [12] where it was shown that
the Alamouti scheme is a special case of Space-Time
Block Code (STBC). Exploiting transmitter diver-
sity using amicable orthogonal designs was consid-
ered in [4]. The connection between the STBC of
[12} and the approach in [4] was explored in [3].
Both approaches assume that the transmitter does
not have channel state information (CSI) but the
receiver needs CSI.

In this paper we describe a differential mod-
ulation scheme based on the codes proposed in
[4]. Compared with the scheme proposed in [11]
our scheme has a simpler transmitter and receiver.
Compared to the schemes proposed in [8], [9] and
[6] our scheme has a simpler decoder and for a given
rate has a higher coding gain and a lower Bit Error
Rate (BER).
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II. CHANNEL MODEL

Consider a transmitter with n antennas and a re-
ceiver with m antennas. Let A be the m xn channel
gain matrix. Thus the ij®* element of A is the (com-
plex) gain factor for the path from the j** transmit
antenna to the i** receive antenna. We assume that
the received signal is corrupted by additive white
Gaussian noise. Let W; be the n X n matrix trans-
mitted at a time ¢. Then the received m X n matrix
R; can be written as:

R, = AW + Ny (1)
where N; is the m x n white noise matrix whose
elements are i.i.d Gaussian random variables with
mean zero and variance ¢2.

The fading we consider here is frequency non-
selective Rayleigh fading (or flat Rayleigh fading),
in the case of which the elements of A are indepen-
dent complex Gaussian random variables.

III. UNiTARY CODES BASED ON AMICABLE
ORTHOGONAL DESIGNS

A. Amicable Orthogonal Designs

Let {X;}7-, and {Y;}7_; be a set of 2p matrices
of size n X n which satisty the following conditions:

X;X;=1I YYy =1 Vj

XXy ==X X; VYo =-ViY} Vi#£k

XY =YX} Vik

(2)

where I denotes the n x n identity matrix and *
denotes the conjugate transpose. Then {X;} and
{Y}} are said to constitute an amicable orthogonal
design of order n in p variables [4]. Explicit designs
for {X;} and {Y;} (for n = 2,4, 8) which satisfy the
conditions in (2) are given in Appendix A. (Also see

(4))-



B. Unitary Constellations

Let S denote the set of symbols from a (scalar)
unitary constellation. That is, s; € S implies
|s;] = 1. Well known examples of unitary constel-
lations are BPSK, QPSK and 8-PSK. Let {s;};.,
be a block of p symbols to be transmitted at a time
t. Let s} and s! denote the real and imaginary
parts of s, i.e, s; = s& + is]. Define

1 & )
Zy = 7 Z (XjsF + iY;s]) (3)

Jj=1
Then it can be shown that:

1 (2
5 (Z |S.7‘|2) Inxn

2,7; =
. j=1

nxn (4)

= ;pInxn =

Thus Z; is a unitary code matrix. Note that Z, is
a Space-Time Block Code as defined in [12]. The
connection between space-time block codes and am-
icable orthogonal designs is discussed in [3].

IV. DIFFERENTIAL DETECTION

A. Transmission of square matrices

First we consider the case of n x n coding matri-
ces. From the Appendix we can see that forn = 2,4
and 8 we have such nxn matrices {X;,Y;}. The tth
block to be transmitted is an n X n matrix W;. At
the start of the transmission we transmit the n x n
identity matrix. That is,

Wo = Inxn (5)
Let {s;}i=; be the set of p unitary symbols to be
transmitted in the $*! block. Define, as in (3),

1 P D
Ty = — X;st+:iY Vs 6
: \/23(;“ Z,,) (6)

Jj=1
If W;_y is the (¢t — 1)'® block then the ¢*B block
transmitted is given by
Wt = Wt_.]_ Zt (7)

Assuming Wy_1W;*, = Inxn, it follows from (6)

and (3) that
i VVtVV: = Inxn (8)
Since WoWg = Inxn we have:
WW = Inxn Vi 9)

To summarize the t*! block to be transmitted will
be W; given by (5), (6) and (7).

B. Mazimum~Likelihood Detector

The received matrix at time ¢ is given by:

R, = AW: + M

= AWi_1Z; + N; (10)

If AW,_; were known to the receiver then the max-
imum likelihood (ML) detector for {s;}_; would
be

{8; };;1 = Arg min{s]. },5;,€8 tr{(Ry — AW;_1Z,)*
X (Rt - AWt_l Zt)}
(11)
where tr(-) denotes the trace operator. The receiver
can be simplified by noting that

tr ({R: — AWi_1Z,}*{Re — AW;_1Z:})
= tr (R}R; + Z;W; | A* AW, 1 Z,
- RIAW, 1 Z, — Z;W; | A'R,)

= tr(R; R:) + tr(A*A)
—2 Real {tr(R} AW;_1 Z;)}

Thus the ML detector for {s;}%;

(12)
becomes

{3;}5=1 = Arg max(y;}s,es Real{tr(R{AW;-1Z:)}
P

= Arg max(;}.5,e5 2 {Real{tr(H’,;‘AWt_lX_,i)}sé2
i=1

+ Real{tr(R; AW;_1iY;)}s}}

(13)

Hence the maximum likelihood detector for s; is
given by

§ = Arg max [Real{tr(R{AWer X;))sf

+ Real{tr(Rt*AWt_lin)}sﬂ (14)

In the differential case we assume that the re-
ceiver does not know the -channel and hence does
not know AW;_;. The received signal at time t — 1
was .
Ri1 = AW, + Mg (15)

Since MN;_; is a Gaussian white noise, R;.i can
be taken as the Maximum Likelihood estimate of
AW;_, (based on one block). Substituting R;_; for
AW,_; in (14) we get the expression for the Maxi-
mum Likelihood detector: !

3 = Argg}g [Real{tr(R;Rt—IXj)}Sf

+ Real{tr(R;R;—11Y;)}s]]

! A more rigorous proof is provided in [2]

(16)
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Note that the detector has a decoupled form: one
scalar detector for each of the symbols {s;}. Com-
pared to the detectors in [6], [8] and [11], the above
detector has a much lower computational complex-
ity. It is shown in [2] that the SNR for the differen-
tial detector in (16) is approximately given by

tr(A*A)
202

which is about 3 dB lower than the SNR for the co-
herent detector in (14). This is in agreement with
what is known for the conventional DPSK scheme
for a single antenna system. (See [10] for details).
Since the elements of A are i.i.d. complex Gaussian
random variables, the SNR is a chi-squared random
variable with 2mn degrees of freedom. Thus a di-
versity of order mn is achieved, like in the coherent
detection case.

SNRdiff ~ Es (17)

C. Transmission of wide matrices

The scheme outlined in the previous sections is
valid for n = 2,4 and 8 transmitter antennas. Now
we consider the extension of the scheme for n =
3,5,6 and 7 transmitter antennas. Let Wt(4) and
Wt(s) denote the unitary matrices W; designed for
4 and 8 transmitter antennas respectively.

For n = 3 transmitter antennas, we transmit
<I>3Wt(4) as the B block where

1 000
P3 = 01 00
0010

The multiplication factor ®; can be absorbed in
the channel matrix. The received matrix R; can
be written as:

(18)

R, = A‘§3Wt(4) + M
AW® + N, (19)
where
A= AtI>3_ (20)

From (19) we can see that at the receiving side we
can use the ML detector in (16). Since ®; satisfies
the condition ®3®3 = I3x3 we have that

AA* = AA*

and hence o
tr(A*A) = tr(A™A)

Hence we achieve the same type of diversity and
SNR performance as for the other values of n. Note
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that transmitting ®3 Wt(4) is equivalent to transmit-
ting the first three rows of Wt(4).
For the case of n = 5,6, 7 transmitter antennas

we use an analogous scheme. We transmit @nWt(s)
where @, is an n x 8 matrix given by

¢, = [Inxn Onx(s—n)] (21)

where I,xn is the n x n identity matrix and 0 is an
all-zero matrix. Along the lines of reasoning used
for n = 3 we can show that the same type of SNR
and diversity performance are obtained. Transmit-
ting @nWt(s) is of course equivalent to transmitting
the first n rows of W, ®.

V. CopING GAIN COMPARISONS

The differential space-time coding schemes pro-
posed in [6] and [8] are based on using unitary ma-
trices as symbols of a constellation. This can be
thought of as the matrix counterpart of the unitary
scalar constellations. In [8] and [6] the design of a
set of n X n unitary code matrices G is considered
such that G has a group structure.

For a scalar constellation a good metric to judge
the performance is the square of the minimum dis-
tance between two points in the constellation, that
is,

min
Sk,81

22
Sik#l (22)

lst — se|?
Based on the analysis of error probability it was
shown in [8] that a good metric to judge the per-
formance of a unitary matrix constellation is the
coding gain. The coding gain (as defined in [8}) is:

nA(Ck, C1) (23)

min
Ci,C1EG;k#L

where
A(Ck,C1) = |(Cr — C1)(Cx = C)* M/

and | - | denotes the determinant.

As the code matrices {Z;} we considered are also
unitary the same criterion can be used to judge their
performance . Because {Z;} are constructed as a
linear combination of the symbols from & it is nat-
ural that their performance depends on the choice of
S. Let Z; be the unitary matrix constructed from
the symbols sx(1),...,sx(p), where {sx(j)} € S.
Let Z; be another unitary matrix constructed from
the set of symbols s;(1),...,s(p). Proceeding in a
way similar to (3) it can be shown that:

P

S lsk() — 5GP

Jj=1

(Zv—2) (2~ 20)* =

Inxn

1
P



and hence

((Ze=20(Z=2)" P = 2 | Y lon(d) = )P

i=1

For Z;, # Z;, the above quantity is minimized when
{51(5)} and {s;(j)} differ in just one symbol. The
minimal value is

1
=|s; — sf?
p

where we have dropped the index j. Therefore the
coding gain is given by

(24)

min  (n/p)|s; — si|?

Sk,81 €S8kl

Optimal unitary codes are discussed in [6], [8] and
[9]. However they apply only to group codes.” In
general {Z;} does not have a group structure and
hence does not fall in the class of codes considered
in [6], [8] and [9].

When we compare the codes proposed in this
paper and the codes proposed in [6], [8] we must
take into account the spectral efficiency of the code.
Spectral efficiency is the number of bits transmit-
ted per second/cycle. Depending on the choice of
S we get different spectral efficiencies for {Z,}. We
give in Table I the spectral efficiencies and the cor-
responding coding gains for QPSK and 8-PSK con-
stellations. For comparison we have also shown the
coding gain for the codes in [8], [3]. Whenever the
code corresponding to a certain spectral efficiency
has not been reported in [8], [9], we have left the
corresponding entry blank.

From the table we can see that for a given spectral
efficiency our differential scheme has a better coding
gain than the one in [8], [9]. Moreover since our
scheme is based on Space-Time block codes, it is
also computationally more attractive.

VI. NUMERICAL STUDIES

In this section we present numerical examples
for our differential detection scheme and compare
its performance with that of the coherent detection
scheme in terms of the Bit Error Rate (BER). The
channel we consider is a flat Rayleigh fading chan-
nel. The elements of A, {4;;}, are considered to
be i.i.d. complex Gaussian random variables with
mean zero and variance equal to one: A;; ~ N(0,1).
We consider a system with two transmitter anten-
nas and one receiver antenna. The signal power is
set to unity: Es; = 1. The variance of the addi-
tive Gaussian white noise is varied to obtain differ-
ent SNR values. For the coherent detection scheme

TABLE I
CODING GAINS FOR TWO, THREE AND FOUR TRANSMITTER
ANTENNAS. THE RATE IS GIVEN IN BITS/SEC/HZ.

Number of | Symbol | Rate Coding Gain
Antennas | Set New Codes
. Codes | in [8], [9]
2 QPSK 2 2 1.531
8-PSK | 3 0.5858 | -
3 QPSK | 1.5 2 -
8-PSK | 2.25 | 0.5858 | -
4 QPSK | 1.5 2.7 1.85
8-PSK | 2.25 | 0.78 -

we assume that perfect CSI is available at the re-
ceiver. The Bit Error rates were obtained from 10°
Monte-Carlo simulation runs. Both A and the noise
realizations were varied.

In Figure 1 we compare the differential detection
scheme using QPSK modulation (and hence hav-
ing a spectral efficiency of 2 bits/sec/Hz; see Ta-
ble I) with the optimal code proposed in [8] having
the same spectral efficiency. From the figure we
can see that the proposed differential Space-Time
block code outperforms the differential code in [8]
by about 3 dB. It can also be seen that the coherent
detector outperforms the corresponding differential
detector by 3 dB. However to implement the coher-
ent detector the reciever need to know the channel.

VII. CONCLUSION

In this paper we considered the use of Unitary
Space-Time Block Codes for differential modula-
tion. We showed that their use, when compared
to other existing codes, leads to a computation-
ally simpler receiver and also that for a given rate
they have a higher coding gain. More details of
these codes and their performance analysis will be
reported in [2].

APPENDIX A

Here we present the explicit design of {X;} and
{Y;} for n = 2 as well as the procedure for construc-
tion of these coding matrices for n = 4 and n = 8,
The reader interested in more details is referred to
(5].

Design for n =2
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" | -8 Coherent detection scheme.
| -~ Differential detection scheme.
-+~ Differential scheme presented in [8].
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Fig. 1. Bit Error Rates for a Rate of 2 bits/sec/Hz.

Consider the 2 x 2 matrices:

(A1)
0 1 @_(1 O
1o) ¥ =(0 1)
The reader can verify that the matrices in (A.1)
satisfy the conditions in (2).

Design for n =4
Define the following matrices:

01 _ (1 0
(46)r=(Y30)e=(5 1)
(A.2)
If C and D are two matrices then C ® D denotes

the Kronecker (tensor) product of C and D [7]. Let
I, denote the identity matrix of size n x n. Then a

set of three 4 x 4 matrices {X 1(4)} and {YJ-(4)} which
satisfy the conditions in (2) are given by:

01

T= 10

x® =1,
xP =prPox{?
xP=TorL

(A.3)

@ _ @
Y; o P®Y; i=12
v =Qel
The reader familiar with the theory of amicable or-

thogonal designs will note that what we have used
to obtain (A.3) is Wolfe’s Slide Lemma [5].

Design for n =8
A set of four 8 x 8 matrices {X J(-S)} and {Yj(s)} which
satisfy the conditions in (2) are given by:

Xl(s) = Is
x®=pPex® ;=23 (A4)
x®P=roI
® _ @
Y®=Poy® ;=123 (A5)

Y4(8) =Q®I

where the matrices {X 3(4)} and {Yj(4)} are as given
in (A.3). This construction is also based on Wolfe’s
Slide Lemma.
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