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maodels may also be justified by virtuz of a fundamental theorem of time series analysis,
which is discussed next. ’

2.6 WOLD DECOMPOSITION

Wald (1938) proved a fundamgntal theorem, which states that any stationary discrete-time
stochastic process may be decomposed into the sum of 2 general linear process and a pre-
dictable process, with these two processes being uncorrelated with each other. More pre-
¢isely, Wold proved the following result:

Any stationary discrete-time stochastic process x(n) may be expressed in the form
) = wlmy + s(n) (2.54)
where
1. u(n) and ${n) are uncorrelated processes,
2. uin) is a general linear process represented by-the MA model:

win) = Zb;v{n-*.i:] (2.53]
¥=0

with &, = 1, and

YT

b=
and where vix] is 2 white-noise process uncorrelated with s(n}; that is,
Elwinis* (k)] = O for all (», &}

3, stn) is a predictable process; that is, the process can be predicted from its own past
with zero prediction variance,

This result is known as Wold's decomposition theorem. A proof of this theorem is given 1n
Priestley (1981).

According to Eqg. {2.55), the gencral lincar process u{n) may be generated by feed-
ing an all-zero fikler with the white-noise process () as in Fig. 2.3(a). The zeros of the
transfer function of this filter equal the roots of the equation:

B(z) = > biz =10
n=0

A solution of particular interest is an all-zero filter that is minimum phase, which means
that all the zeros of the pelynomial B(z) lie inside the unit circle. In such a case, we may
replace the all-zerc filter with an eguivalent all-pole filter that has the same impulse
response A, = b7, as in Fig. 2.5(b). This means that except for a predictable component, a
stationary discrete-time stochastic process may also be represented as an AR process of
the appropriate order, subject to the above-mentioned restriction on B(z). The basic differ-
ence between the MA and AR models is that B(z) operates on the ieput vim) in the MA
madel. whereas the inverse 8 '(z) operates on the output #(r) in the AR model.



116 Chap. 2 Stationary Processes and Models

Whita All-zero filter General

noise, ————=  of impuise L . inear

win) rasponse fy, up{nm} a8
fa)

White Al-pole flter | General

s e

wvin response h, | e "
(B}

25  (a) Model, based on all-zero filter, for generating the hnear process sin; {b)
g p
model, based on all-pole filter, for generating the general linear process
win). Bogh filters have exactly the same impulse respense,

2.7 ASYMPTOTIC STATIONARITY OF AN AUTOREGRESSIVE
PROCESS

Equation (2.42) represents a linear, constant coefficient, difference equation of order M,
in which v(#) plays the rele of input or driving function and u(n) that of ousput or selution.
By using the classical method' for solving such an equation, we may formaily express the
solution w(n) as the sum of a complementary function, u.(n), and a parvicular solution,
u,(n), as follows:

wln} = un) + w,in} (2,56}
The evaluation of the solution w(s) may thus proceed in two stages:

1, The complementary function i {n) is the solution of the homogeneous equation
uin) +ajuin— 1 +au{n—21+ - +agu{n—M=0

In general, the complementary function «,(r} will therefore be of the farm

u (n}=B\pl+Bypl+ -+ Bupi (2.57)
where B, B, . ., B,, are arbitrary constants, and p|, p;, . . . , py, are roots of the
characteristic equation (2.513.

1, The particular solutiot i,(r} is defined by
upfn} = HAD)Yvin)) {2.58)

'We may also use the r-transform methad 10 solve the differcrce equation (2,42}, However, for the dis-
cussion presented here, we find it more informative 1o use the classical method



