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Abstract 

We consider the design of codes for differential 
space-time modulation in the presence of large num- 
bers of transmit and/or receive antennas. Based 
on the novel upper bound on the pairwise-error 
probability of differential space-time modulation for 
large numbers of antennas, we show that Euclidean 
distance is an appropriate code performance indicator 
in the large-away regime. FOT two transmit antennas, 
we me the new design criterion to obtain some new 
differential codes with large minimum Euclidean 
distance. Simulations of bit-ewor-rate confirm that 
the new codes improve the performance of differential 
codes for large numbers of receive antennas. 

1 Introduction 

Differential space-time modulation (DSTRI), which 
doesn't require channel estimates at the transmitter 
or receiver, has gained much attention in recent years 

In (3, 21, it was proposed that the error probabil- 
ity of differential space-time codes on quasi-static flat 
fading channels can be made small at high signal-to- 
noise ratios (SNRs) by designing codes according to 
the rank and determinant criteria - the same design 
criteria proposed earlier for coherent space-time codes 
[6]. More recently, Biglieri et al [l] and Yuan et al 
[9] have suggested that Euclidean distance is actually 
a better predictor of coherent space-time code perfor- 
mance when the number of transmit and/or receive 
antennas is large and SNR is moderate. It is natural 
to ask whether this observation also applies to differ- 
ential space-time modulation. 
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((7, 3, 21, etc). 

In this paper, we consider the design and analysis 
of differential space-time modulation for large num- 
bers of transmit and/or receive antennas. Based on 
the novel upper bound on the pairwise-error probabil- 
ity of DSTXI in the presence of large numbers of an- 
tennas, we show that Euclidean distance is an appro- 
priate code performance indicator in the large-array 
regime. For two transmit antennas and many receive 
antennas, we then use the new design criterion to ob- 
tain some new differential codes with large minimum 
Euclidean distance. Simulations of bit-error-rate show 
that the new codes improve the performance of differ- 
ential codes for four or more receive antennas. 

The rest of the paper is organized as follows. In 
Sec. 2, we introduce the channel model and review 
the general structure of DSTM The pairwise upper 
bound and design criterion for quasi-static Rayleigh 
fading channel are derived in Sec. 3. In Sec. 4, some 
new differential codes for two transmit antennas are 
constructed. Sec. 5 presents the performance simula- 
tion results. Our main conclusions are summarized in 
Sec. 6. 

2 Differential modulation 

Consider a wireless channel in which data are sent 
from t transmit antennas to T receive antennas. Under 
slowly-varying, flat fading conditions, the channel can 
be modeled by 

Y = m H X  f N (1) 

where X is a t x t matrix of transmitted signals, Y 
is an T x t matrix of received signal samples, H is 
an r x t matrix of fading path gains, and N is an 
r x t matrix of noise. We assume that the elements 
of H and N are independent, identically distributed 
(i.i.d.) complex Gaussian random variables CN(0,l). 
We further restrict attention to signal matrices that 
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satisfy 

where It is the t x t identity matrix and t is the 
conjugate-transpose. Consequently, p represents the 
signal-to-noise-ratio (SNR) per receiver antenna. 

In differential space-time modulation (DSTM), the 
transmitted signal matrix for block k is given by 

X X t  = tIt (2) 

XI ,  = Xk-lGk, k = l ,  ..., K. 

where Gk is taken from a unitary matrix constellation 
D and XO is any fixed matrix satisfying (2). The corre- 
sponding data rate is then R = (l/t) log, 191 bps/Hz. 

If H is approximately constant for 2t channel sym- 
bols, the signal blocks can be detected without channel 
estimates using a simple differential receiver [3, eq. 151 

G k  = arg max RelY{GYiYi,-l}, (4) 

where “ReTr” denotes the real part of the matrix 
trace. 

For example, one simple unitary constellation D - 
equivalent to the scheme proposed by Tarokb and Ja- 
farkhani (71 - consists of all matrices of the form 

(3) 

GEL7 

(5) 

where 2, y belong to the unit-energy constellation 
{exp(Pnji/Ail) : i = 0, .  . . , A i l  - 1). Other examples 
are the differential group codes in [3, 21, where the 
constellation B form a group under matrix multipli- 
cation. 

3 Error bound and design criteria 

Previous results on error bounds for DSTAI [7, 3, 21 
have demonstrated that, in the high-SNR limit, per- 
formance is determined primarily by the same criteria 
as in coherent space-time modulation: the rank and 
determinant criteria [GI applied to the constellation 
8. For large r and t ,  however, error probabilities of 
practical interest are often achieved by modest SNRs, 
where the rank and determinant criteria do not apply. 
Consequently, our aim in this section is to develop new 
design criteria applicable to large t and T ?  and moder- 
ate SNR. To this end, we begin by deriving a bound 
on the pairwise error probability, conditioned on the 
current channel fading matrix H .  

For the differential receiver (4), the pairwise error 
probability of transmitting matrix G and erroneously 
decoding G, conditioned on H ,  can be written as 

Pr(G i GIG, H )  = Pr(A 2 OIG,H) , (6) 

where 

A = ReTr{(G - G)Yityk-l}. 

By ignoring the second-order noise term in A, (6) is 
approximated by 

Pr(G i GIG, H )  = Pr(A 2 O/G, H )  

where I(.(( is the Frobenius norm and H‘ = H X + I / &  
follows the same distribution as H .  

For fixed t ,  it is shown in (11 that (1  H’(G-G) (1’ / T  

converges almost surely as T - 03 to I/ G - G 11’. The 
same is shown for T,  t -+ 00 with T / t  i c > 0. In (91, 
the authors assert without proof that the exponent 
above converges to a Gaussian r%ndom variable as T . 
Y + CO, where U = rank(G - G). For fixed U and 
T + CO, this is clearly true; however, for fixed T and 
U + CO, it is not difficult to contrive counterexamples. 
It therefore appears that additional conditions OF G -  
G are needed. We now show that if G and G are 
unitary, and the distance per dimension is bounded 
away from zero 

(8) 
1 
- /IG-G:1/’2 d > 0 ,  
U 

then convergence of the (suitably normalized) expo- 
nent to a Gaussian distribution is assured as U - CO. 

To this end, define the t x t code distance matrix 

A(G,G) = ( G - G ) ( G - G ) ’ ,  (9) 

the bound (7) can then be rewritten as 

where Xj  > 0 , j  = 1,2,. . . , Y are the non-zero eigen- 
values of A(G, G) and U, are. i.i.d. exponential ran- 
dom variables with probability density function (pdf) 
p ( t )  = e-%(t) ,  and mean and variance 1. 

Now consider the normalized sum 

Observe that Z, has mean zero and k i a n c e  ’ . . 
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d Let + denote convergence in distribution. By the 
Lindeberg-Feller version of the Central Limit Theorem 
15, pp, 3261, a sufficient condition for S,, -t N ( 0 , l )  
as TU + M is the Lindeberg condition: For all e > 0, 
we have 

d 

where IIL+,)(z) is the indicator function and E means 
averaging with respect to Zij. Substituting Zij into 
the sum above, we obtain 

For unitary matrices G and 8, it is easy to verify that 
each X j  is bounded between 0 and 4. Combining this 
fact with the convexity of f(z) = z2, we obtain 

from which we conclude that S,, satisfies the Linde- 
berg condition for T -t M or U i CO. Therefore, 
S,, 5 N ( 0 , l )  as TU + M. It follows that the quantity 
( l / ~ ) x i = ~  C;==, XjUij approaches a Gaussian ran- 
dom variable D with N ( ~ D ,  &,) where 

j=1 

The differential pairwise error probability is then 
bounded by 

Recall that, for small arrays or high SNR, the pair- 
wise error probability of DSTM is bounded by [3, 21 

To minimize this pairwise error probability bound in 
the high-SNR limit, we should therefore restrict atten- 
tion to full diversity codes (U = t ) ,  in which case we 
can choose the product distance as the design criterion: 

Ap(G,G) = \(G-G)(G-G)'I1lt (15) 

where /AI denotes the determinant of matrix A. Then 
(14) can be written as 

The pairwise error upper bounds (13) and (16) sug- 
gest that the design criteria for DSTM over quasi- 
static Rayleigh fading channel depend on the array 
size, which leads to the following code design criteria: 

For small arrays, (16) shows that the rank and 
product distance are the dominant parameters in code 
performance, which is consistent with the rank and de- 
terminant criteria in [3, 21. 

For large arrays, define Aea = I(G - 811 as the 
Euclidean distance of G and G. (13) suggests that 
for pd/16 << 1, the pairwise error probability is dom- 
inated by Euclidean distance. In order to minimize 
the error probability for large arrays, we need to 
maximize the minimum Euclidean distance over all 
pairs of distinct matrices in 9. (13) also shows that 
codes that achieve good performance for large mays  
may not have full diversity. A similar criterion to 
this Euclidean distance criterion is considered in [4], 
where the focus is on low-SNR performance rather 
than large arrays. 

4 Code design for large arrays 

We now use the Euclidean distance criterion to con- 
struct new differential unitary space-time codes appro- 
priate for two transmit antennas and many receive an- 
tennas. Several codes with good performance for small 
arrays have already been presented in the literature, 
such as the differential scheme based on Alamouti's 
code in [7] and the group codes in 131. In [SI, we re- 
considered the performance of these codes using the 
Euclidean distance criterion and then proposed some 
new codes for large arrays. For example, a new fam- 
ily of unitary codes referred to as Gram-Schmidt (GS) 
code is given by 

1 
G = - [  Jz -zxy' ;] 

with minimum Euclidean distance A, = 21 sin(n/M)), 
where z, y and z are taken from the M-PSK constella- 
tion. For a given M-PSK constellation, the GS codes 
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have the same minimum Euclidean distance as the 
Alamouti code [7], which has full diversity and takes 
the form (5), but the GS code achieves a rate that is 
1.5 times larger. GS code is not a full diversity code. 

In this section, we will propose some new codes 
that can achieve good performance for large arrays. 
Although under the Euclidean distance criterion, 
optimal codes may not necessarily have full diversity, 
here we will focus on full diversity codes in order to 
reduce the performance loss for small arrays. 

Modified Gram-Schmidt (MGS) code 

We first consider a class of unitary codes given by 

where z is taken from M-PSK constellation. We 
call this code a Modified Gram-Schmidt (LIGS) code 
for its structural similarity to the GS code. For 
simplicity, here we let p and y take integer values 
and choose them to maximize the resulting minimum 
Euclidean distance Ae. Generally, we can get optimal 
MGS codes that have better Euclidean distance than 
Alamouti code. For example. for rate R = 3 bps/Hz, 
the Alamouti code has A. = 0.7654. By contrast, 
the full diversity MGS code with p = 44, y = 34 
has A, = 1.3725. At this rate, the GS code has 
A, = 1.4142, which has slight gain relative to the 
AlGS code, but the MGS code achieves full diversity. 

Modified-Alamouti (MA) code 

We now consider a family of codes which are closely 
related to the Alamouti code, given by 

where z, y and A,, are taken from M-PSK constella- 
tion, and A,, is a function of x and y. We refer to this 
code as Modified-Alamouti (MA) code [SI. Here we 
let AT, = zmy” where m and n are taken values from 
[0 : 0.5 : M/2] and choose m and n to get the optimal 
full-diversity MA code with maximum A,. For exam- 
ple, for R = 3 bps/Hz, the choice m = 4 and n = 2.5 
yields a full diversity code with the largest Euclidean 
distance, A, = 1.2593. MA codes often have better 
Euclidean distance than the Alamouti code, but typi- 
cally have some performance loss relative to the Alam- 
outi code for small arrays. 

Table 1 summarizes the Euclidean distance perfor- 
mance of the codes discussed above. Also shown for 

comparison are the product distances of these codes. 
The parameters for MGS and MA codes are ($, y) and 
(m, n), respectively. We can conclude that codes that 
have large Ae may not necessarily have large Ap. 

5 Numerical results 

In this section, we provide the simulated bit-error 
rate (BER) performance of the aforementioned differ- 
ential unitary codes for two transmit antennas and 
various numbers of receive antennas in a quasi-static 
Rayleigh flat fading channel 

In Fig. 1 and Fig. 2, we compare the BER per- 
formance of the bIGS, MA, and Alamouti differen- 
tial codes for rate R = 2 bps/Hz and rate R = 3 
bps/Hz respectively. On the far right of the figures, 
we see that the Alamouti code outperforms the hIGS 
and MA codes for r = 1. For r = 2, the perfor- 
mance of the three codes is considerably closer. For 
r 2 4, however, the new codes perform better than the 
Alamouti code. In particular, at the BER of the 
MGS code outperforms the Alamouti code by approx- 
imately 1.3 dB for r = 16, R = 2, and by about 3 dB 
for r = 16, R = 3. These results provide additional 
evidence that A, is an appropriate design criterion for 
large arrays, and that the new codes can improve the 
performance of DSTM in this regime. We further ob- 
serve from the figures that Ae appears to be a good 
performance indicator even for relatively small arrays, 
such as t = 2 , r  = 4 .  

Fig. 3 compares the BER performance of the MGS, 
MA and GS differential codes for rate R = 3bps/Hz. 
We can see that the MGS and MA codes have slight 
performance loss for large arrays but much perfor- 
mance gain for small arrays relative to the GS code. 

513 



Figure 1: BER performance of Alamouti, hIGS and 
MA codes for R = 2 bps/Hz and t = 2. 

Figure 2: BER performance of Alamouti, MGS and 
MA codes for R = 3 bps/Hz and t = 2. 

6 Conclusions 

We have considered the design and analysis of dif- 
ferential space-time codes when the number of trans- 
mit or receive antennas is large. Based on the 
novel upper bound on the pairwise-error probability 
of DSTM in the presence of large numbers of anten- 
nas, we show that Euclidean distance is an appropriate 
code performance indicator in the large-array regime. 
For two transmit antennas and many receive antennas, 
we use the new design criterion to obtain some new 
differential codes with large minimum Euclidean dis- 
tance. Simulations of bit-error-rate performance con- 
firm that the new codes can achieve good performance 
for four or more receive antennas. 

Figure 3: BER performance of GS, hIGS and bIA 
codes for R = 3 bps/Hz and t = 2. 
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