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Abstract

This report deals with pilot-based channel estimation in wireless OFDM systems. We
assume that the receiver is able to use all transmitted pilots, which is the case in broad-
casting and in the downlink of a multiuser system. Four estimators (of which two have
been proposed in the literature) are compared, both in terms of mean-squared error
and bit-error rates. In the latter case, we simulate a multiuser system which incorpo-
rates channel coding. The channel estimation is a two-dimensional problem (time and
frequency), and both separable and non-separable estimators are investigated. We de-
sign low-rank approximations of these estimators, and compare the performance at given
complexities. The comparison shows that the use of separable estimators increases the
performance substantially, compared to non-separable estimators with the same com-
plexity. For the scenario investigated in this report the performance is further improved
by applying low-rank approximations separable estimators.






Chapter 1

Introduction

Wireless orthogonal frequency-division multiplexing (OFDM) is currently used and pro-
posed for several broadcasting applications. The European standard for digital audio
broadcast (DAB) [1] uses OFDM with differential phase-shift keying (DPSK). This is
suitable for low bit-rate systems, but when higher bit-rates are required, multiampli-
tude modulation is more appropriate. Proposals for digital video broadcasting [2, 3|
have included multiamplitude modulation OFDM. These schemes can be made differen-
tial, which offers the advantage of avoiding channel estimation. Differential amplitude
and phase shift keying (DAPSK) [4] is an example of this approach. In DAPSK, how-
ever, the constellation points are non-uniformly distributed in the signal space, which
reduces performance. There may also be metric difficulties concerning decoding. Co-
herent modulation, on the other hand, gives better performance, but because of the
necessary channel estimation, it requires more complexity at the receiver. It is of inter-
est, therefore, to investigate the performance of coherent OFDM systems using channel
estimators with different levels of complexity. In this paper we analyze low-complexity
coherent demodulation receiver schemes suitable for high bit-rate OFDM.

One way of estimating the channel in a flat fading environment is to multiplex pilots
(known symbols) into the transmitted signal. From these symbols, all channel attenu-
ations are estimated with an interpolation filter. This technique is called pilot-symbol
assisted modulation (PSAM) and was introduced for single-carrier systems by Moher
and Lodge [5] and analyzed by Cavers [6]. Since each subchannel in OFDM is flat fad-
ing, PSAM can be generalized to two dimensions where pilots are transmitted in certain
positions in the time and frequency grid of OFDM. The channel estimation is then per-
formed by a two-dimensional interpolation. Hoher [7] proposes to use finite impulse
response (FIR) filters for this and to separate the use of time- and frequency correlation.
He argues that this is a good trade-off between complexity and performance.

The spacing of pilot symbols in PSAM for single-carrier systems was investigated in
[6]. It was found that the optimum spacing was somewhat closer than the Nyquist rate,
i.e., the inverse of the bandwidth of the channel covariance function. We generalize this
result to two dimensions for the OFDM time-frequency grid. Using a dense pilot pattern
means that the channel is oversampled, implying that low-rank estimation methods [8]
can work well. This type of low-complexity estimation projects the observations onto a
subspace of smaller dimension and performs the estimation in that subspace. By over-



sampling the channel, 7.e., placing the pilot symbols close to each other, the observations
essentially lie in a subspace and low-rank estimation is very effective.

In this report we present and analyze pilot-based OFDM channel estimators that rely
on both time and frequency correlation of the fading channel. The estimators are linear
and feedforward, i.e., no decision direction or feedback is used. We divide them into two
classes: 2-dimensional (2-D) and separable estimators. The latter uses 1-dimensional
(1-D) interpolation filters in the time and frequency directions separately. In each class,
we compare a FIR Wiener filter [9] with a low-rank approximation of the linear mini-
mum mean-squared error (LMMSE) estimator [8]. The estimators are compared both in
terms of mean-squared error (MSE) and coded bit-error rate (BER). The system and the
scenario are introduced in Section 2. The estimators are described in Section 3 and their
performance is presented in Section 4, both in terms of mean-squared error and coded
bit-error rate. Finally, in Section 5 we present conclusions.



Chapter 2

System description

2.1 OFDM system

In this report we consider an OFDM system operating in a Rayleigh fading channel
environment. This system uses a cyclic prefix [10], which is a copy of the last part of the
OFDM symbol and acts as a guardspace between consecutive OFDM symbols. Hence,
if the impulse response of the channel is shorter than the cyclic prefix, inter-symbol
interference (ISI) is avoided. Furthermore, if the channel is assumed constant during one
OFDM symbol, inter-carrier interference (ICI) is also avoided [10].

In Figure 2.1a a schematic view of the base-band OFDM system is shown. The mod-
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Figure 2.1: OFDM system. (a) Base-band model, (b) parallel subchannels model. 'CP’

and "QR’ denote the insertion and deletion of the cyclic prefix, respectively.



ulation on N subcarriers is performed by an inverse discrete Fourier transform (IDFT) in
the transmitter [11]. Similarly, demodulation is done with a discrete Fourier transform
(DFT) in the receiver. The effective symbol length is T'= NT, where T} is the sampling
period of the system. Adding a cyclic prefix (CP) with a length of T = LT, makes the
total symbol length 7"+ T¢;. If IST and ICT are eliminated, we can describe the system
as a set of parallel Gaussian channels [12], shown in Figure 2.1b, with correlated channel

attenuations
k
h, = — k=0...N—-1
k G (NTS> ) O )

where G (+) is the frequency response of the channel g (7) during the OFDM symbol. The
received signal y; on subchannel k£ can thus be described as

Ye = iy + N, (2.1)

where z, is the transmitted data symbol and n, the channel noise at subcarrier k. The
relation (2.1) holds for every OFDM symbol, thus creating a two-dimensional grid with
frequency (subcarriers) on one axis and time (OFDM symbols) on the other.

2.2 Scenario

The channel estimation is based on pilots transmitted at certain positions in the time-
frequency grid of the OFDM system. The channel attenuations are estimated by means
of interpolation between these pilots, where we assume that the channel estimators can
use all transmitted pilots. This is the case in, e.g., broadcasting or in the downlink of
a multiuser system. In both these cases there is only one physical channel between the
transmitter and the receiver. Thus channel attenuations in neighboring time-frequency
gridpoints are highly correlated, a feature that can be used for channel estimation. In the
uplink of a multiuser system on the other hand, each user has their own physical channel,
so channel attenuations stemming from different mobile transmitters must be assumed
to be uncorrelated. To estimate the attenuations for one user, only pilots transmitted by
that user can be used. Thus, the uplink is quite different from our scenario and will not
be considered here.

The investigated OFDM system has a bandwidth of 5 MHz and is operating in the
2.2 GHz frequency band. The number of subcarriers is N = 1024, which makes the
effective symbol length 205 pus. The environment is a macrocell which is assumed to have
a maximum delay spread of 10 us and a maximum Doppler frequency of 240 Hz. Thus, the
maximum Doppler frequency relative to the inter-carrier spacing is fpax = 5 %, which
corresponds to a vehicle speed of 120 km/h. The power delay profile is exponentially
decaying with root mean square (RMS) width 7,5 = 2.2 us. To eliminate ISI, we use a
guard space of 10 us which corresponds to L = 50 samples. The length of the OFDM
symbol is 205 + 10 = 215 ps which makes the relative size of the guard space 5%.
The corresponding SNR loss is 0.2 dB. Our system model assumes that the channel is
constant during an OFDM symbol. In reality ICI occurs due to channel fading during the
transmission of an OFDM symbol [13, 14]. However, with a maximum relative Doppler
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frequency of 5%, the signal-to-ICI ratio is 24 dB [14]. This is negligible in the SNR ranges
we are looking at, and consequently we ignore the ICI and use the model in (2.1).

Interleaving is performed separately in frequency and time over a frame consisting
of 50 OFDM symbols. This corresponds to a maximum delay of 10.7 ms. First, inter-
leaving in frequency is done by placing consecutive data symbols 64 subcarriers apart.
Interleaving is then performed in time with a unique pattern for each subcarrier. These
patterns are random permutations and changed every frame. By having different inter-
leaving patterns on all subcarriers, channel attenuations are interleaved in both time and
frequency. This produces an almost perfect interleaving with no significant performance
loss.

For error correction, a rate 1/2 convolutional code with the octal polynomials (133, 171)
is used, i.e., the code polynomials are [15]

9(D) = 1+ D+D?+ D'+ D°
g"(D) = 1+ D*+ D*+ D+ D°.

The constraint length is ny = 7 and a tail of ng + 1 = 8 zeros is appended to clear the
encoder’s memory. The receiver uses a soft-decision Viterbi decoder with a truncated
memory length of bng = 35 bits. The bits are modulated using BPSK in each dimension
and the inphase and quadrature parts are concatenated to form QPSK symbols. This
makes the data rate of the system 4.7 Mbit/s.

2.3 Channel model

In our analysis we use the wide-sense stationary uncorrelated scattering (WSSUS) channel
model introduced in [16]. By considering the channel to be constant over one OFDM
symbol, the instantaneous frequency response of the M —path channel at time ¢ is

M
G (f, ) \/_ Ze](é 27 Fp,, t— 27rf7—n) (22)

where 6, is the phase, Fp, the Doppler frequency and 7, the delay of the n'® path. All
these parameters are independent random variables. To obtain Rayleigh fading with the
Jakes’ spectrum [17] and an exponentially decaying power delay profile with RMS-value
Trms, We choose the probability density functions as [16]

po(0) = 1/2m, 0<6<2r

Fp) = . Fp| < Fpm,
pFD( D) 71—F'D,max\/17(F'D/IJD,IHAK)Q’ ‘ D’ D,Indx .

pT (7_) _ ef-r/'rrms O S e S Tcp

Trms (175—Tcp/‘rrms ) )

The random variables Fp and 7 can easily be obtained from a uniformly distributed
random generator with outputs € [0, 1] by using the inverses of the desired cumulative
distribution functions [16].



2.4 Pilot pattern

By using a two-dimensional generalization [7] of pilot-symbol assisted modulation [5],
known symbols (pilots) are transmitted on certain positions in the time-frequency grid.
The number of pilots to use is a trade-off between data rate and channel estimation
performance. However, by viewing the channel estimation in the time-frequency grid as
a two-dimensional interpolation, fundamental limits on the density of pilots can be de-
rived. The scattered pilot symbols can be seen as (noisy) samples of the two-dimensional
stochastic signal G(f;t). These samples have to be placed close enough to fulfil the sam-
pling theorem and avoid aliasing. Note that the effective SNR is lowered by using many
pilots, since a smaller part of the transmitted power is used for data symbols. Since
G(f;t) in (2.2) is the Fourier transform of the channel impulse response at time ¢ (which
is assumed to be constant for one OFDM symbol), the auto-covariance function of G(f;t)
is the spaced-frequency, spaced-time correlation function ¢¢ of the channel [18]

Raa (Af, At) = E{G([;)G*(f = Afit = At)} = ¢o (Af, At).

The bandwidth of this function is B, (the Doppler spread) in the A f direction and 7.«
(the multipath spread) in the At direction [18]. For the analyzed OFDM system we have

2fD,nmx
NTj

Bd = 2FD,maX:
Tmax = LTS:

where fp max is the maximum Doppler frequency relative to the inter-carrier spacing.
If we assume that pilots are placed N; subcarriers apart in every N, OFDM symbols
we have
Ny
" NT,

since the inter-carrier spacing is 1/NT; and the duration of an OFDM symbol is (N + L) T.
To fulfill the sampling theorem [19] we need

hhl:G(k‘ ,Z-Nt(N+L)TS>

N
N, < —
! L
1

2 (1 + %) fD,maX ‘

In the analyzed system we have N = 1024, L = 50 and fp max = 0.05 which gives

Ny

1024
Ny, < —2—-905
! 50
1
N, < —9.5.
¢ 2 (1+ 29 0.05

In [6], where PSAM for single-carrier systems is analyzed, it is shown that the BER
can be lowered by placing the pilot symbols closer than that specified by the sampling
theorem. Note that there exists a pilot spacing which optimizes the trade-off between
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Figure 2.2: The pilot pattern used in the system. Pilot symbols are marked with grey
squares.

improved channel estimation and reduced SNR on the data symbols. By varying the
pilot spacings Ny and N, it was found that N; = 4 and N; = 4 was close to optimal
in terms of BER. The used pilot pattern is shown in Figure 2.2. This means that 1/16
(=~ 6%) of the bandwidth and the transmitted power is used for pilots. Note that the
channel is oversampled which means that low-rank estimators can be very effective [8].

In our study the pilot symbols have the same average power as the data symbols.
However a technique called boosted pilots can also be used, which is proposed for DVB
[3]. This means that the pilot symbols are transmitted with a higher average power than
the data symbols. The average SNR on the data symbols is reduced but the channel
estimates are better since the SNR at the pilot symbols is increased. Thus, by choosing
a suitable power level for the pilot symbols, the bit-error rate can be decreased.
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Chapter 3

Estimators

In OFDM systems the optimal linear estimator in the mean-squared error sense is a 2-D
(both time and frequency) filter. However, the complexity of this estimator is usually
too large for it to be of practical use. A number of suboptimal low-complexity channel
estimators have been suggested in the literature, see e.g., [7, 20]. We will investigate
two classes of estimators: 2-dimensional and separable. The use of separable filters is
a common method to reduce complexity in multidimensional signal processing [21]. For
both separable and non-separable estimators we look at FIR Wiener filters and low-rank
approximations of LMMSE estimators. We compare all estimators’ performances for
two levels of complexity. Since they are all linear estimators, a reasonable measure of
complexity is the average number of multiplications per estimated attenuation.

In the sequel we use the following notation. The backrotated, or least—squares-
estimated, channel attenuations at pilot positions are denoted by

Yk
Prg = —),
Tkl

where yy; is the received signal at subcarrier £ in OFDM symbol [ and zj; is the cor-
responding transmitted pilot symbol. The final estimate of the channel attenuations
hi, are linear combinations of the py;’s, where the coefficients are chosen according to
each estimator’s structure. By arranging the available LS estimates at pilot positions
in a vector p and the channel attenuations to be estimated in a vector h, the minimum
mean-squared error estimator of h is [9]

h = Ri,R,.p, (3.1)

where Ry is the cross-covariance matrix between h and p, and Ry, is the auto-covariance
matrix of p. Depending on the number of pilots used and their relative locations, the
size of p and the corresponding auto-covariance matrix Ry, will change. Also, depending
on the number of estimated attenuations the size of h will change. Furthermore, Ry
depends on the relative positions between estimated attenuations and the used pilot
positions. Below we address several choices on used pilots and estimated attenuations.
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3.1 2-D filters

The 2-D Wiener filter is optimal in terms of MSE, if complexity is not considered. How-
ever, for a fixed complexity, the number of filter taps that can be used is quite small. We
use this estimator as a reference and investigate a reduced complexity estimator, which
is derived using the theory of optimal rank-reduction [9].

3.1.1 2-D estimator

If the allowed complexity is K multiplications per attenuation, the two-dimensional filter
uses the K pilots closest to the estimated attenuation. In Figure 3.1, we display an
example of the seven pilot positions used (K = 7) to estimate one channel attenuation.

-

» Frequency

Ne

H . Time

Figure 3.1: Two-dimensional FIR Wiener filter. The estimated tone (x) is a linear
combination of the 7 pilot tones (H).

For every estimated channel attenuation there is a set of K associated pilots. Optimal
weights are calculated according to (3.1). For the estimator with the lower complexity
we will use the 3 closest pilots and for the higher complexity, the 13 closest.

3.1.2 Low-rank 2-D estimator

The low—-rank 2-D estimator is in a sense an approximation of the optimal 2-D estimator
in the previous section. The low complexity is achieved by a generalization of the ideas in
[8]. To allow a low-rank approximation K, attenuations, h, are estimated simultaneously
using the K, closest pilots, p. If the attenuations to be estimated and the pilots used are
chosen properly, the estimator can be well approximated by a low-rank estimator, thereby
reducing the complexity considerably while maintaining most of the performance. Note
that the estimated attenuations can be chosen arbitrarily in the time-frequency grid. In
Figure 3.2 an example is given for the location of estimated attenuations (K} = 15) and
the used pilot symbols (K, = 7).
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Figure 3.2: Structure of the low-rank 2-dimensional estimator. The tones to estimate
are marked with (x) and the pilots used are marked with (H).
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The estimator becomes R
h = G’Tpu

where G, is a low-rank Wiener filter [9]. From the singular value decomposition (SVD)
RiupR,)? =USVY,

where U and V are unitary matrices and X is a diagonal matrix [22], the low-rank Wiener
filter is determined by [9]
G, =Ux, V'R,

where ¥, is a K}, x K, diagonal matrix containing the r largest singular values. The
complexity of this estimator is found in Appendix A to be

, (1 ; %) (3.2)

multiplications per estimated attenuation, where r is the rank of the estimator (number
of singular values used), K, the number of pilots used and K, the number of attenuations
to be estimated.

For the lower complexity estimator we chose K, = 33 pilots (3 in the time direction
and 11 in the frequency direction) and K}, = 64 attenuations to estimate (4 in the time
direction and 16 in the frequency direction). The latter were placed in the middle of the
former in order to exploit as much correlation as possible. With a rank of » = 2, the
number of multiplications per attenuation is, according to Eq. (3.2),

33
Ol()w =2 (1 + @) - 30

For the higher complexity we chose 80 pilots (4 in the time direction and 20 in the
frequency direction) and 64 attenuations to estimate (4 in the time direction and 16 in
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the frequency direction). The rank used was 6, giving

80
Chign = 6 (1 + a) =13.5.

multiplications per attenuation.

3.2 Separable filters

Since 2-D filters in general tend to have a large computational complexity, the outer
product of two 1-D filters can give a good trade-off between performance and complex-
ity. This is a standard technique in multidimensional signal processing [21] and it has
also been proposed for pilot-based channel estimation in OFDM systems [7]. In pilot-
based estimation schemes, the major advantage is the low number of multiplications per
used pilot. This allows the estimator to be based on more pilots, thus improving the
performance.

Based on the pilot pattern chosen, the general concept used in this report is shown
in Figure 3.3, where a 1-D filter is applied in the frequency direction. Thereafter, a 1-D
filter is applied in the time direction to complete the interpolation to all points in the
grid.

4 Frequency Ny

> 0 9§

T OO

Time

Figure 3.3: Separable filter based on one-dimensional filters in frequency (1) and time
(2) directions. Filtering in the frequency direction (1) is performed first.

We investigate both an estimator based on the proposal in [7] and a variant thereof,
which allows the use of more pilots by a low-rank approximation in the frequency direc-
tion.

3.2.1 Separable FIR filters

The use of separate 1-D FIR filters in the time and frequency directions has been proposed
by Hoher in [7]. First, all attenuations in OFDM symbols containing pilots are estimated.
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This is done with a FIR Wiener filter of length K;. Two attenuations on different
positions relative to the pilots will need different filters, so there will be N; different
filters for this estimation. Note that these filters are non-causal in the sense that they
will use pilots on both sides of the estimated attenuation in order to exploit the closest
pilots. After this procedure there will be estimates of all attenuations in every N/* OFDM
symbol. FIR Wiener filters of length K, are now used in the time direction to obtain
estimates of all attenuations. Here there will be NV, — 1 different filters, depending on
which attenuation is estimated. These filters can be noncausal, which will introduce a
delay in the system. If this delay cannot be accepted, causal filters must be used.
The total number of multiplications per estimated attenuation is

since the frequency-direction filter has to be applied in only one out of every N; OFDM
symbols. This fact can be used in the design of the filters since the frequency-direction
filter taps are cheaper in terms of complexity. By reducing the number of taps in the time
direction filter by one, N; taps can be added to the frequency direction filter without
changing the total complexity.

For the lower complexity we used 5 taps in the frequency filter and 2 taps in the time
filter. This results in

5
Cuow = 7 +2=3.25

multiplications per attenuation. For the higher complexity, 25 and 7 taps were used for
the frequency and time filters, respectively. This means a complexity of

25
Ohigh = Z +7=13.25

multiplications per attenuation.

3.2.2 Low-rank separable filter

By using observations from [8], where low-rank approximations of channel estimators are
presented, we replace one of the FIR filters in the estimator proposed by Hoher. Instead of
FIR Wiener filters in both directions, a low-rank approximation of the frequency direction
LMMSE estimator is used in combination with the time direction FIR filter. Hence, a
frequency direction filtering is performed for each OFDM symbol containing pilots. An
obvious way of doing this filtering is to estimate all attenuations in an OFDM symbol
using all pilots. However, when using all pilots, the complexity reduction is not so large
that it can compete with a short FIR Wiener filter. The number of multiplications per

attenuation is (see Appendix A)
1+ Ky
r _
K,)’

where r is rank used, K}, and K, are the number of attenuations to estimate and number
of pilots used, respectively. Since pilots far away from the estimated attenuations are
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weakly correlated, they do not contribute much to the estimate. By excluding them,
the complexity goes down while the performance is almost the same. Hence, the OFDM
symbol is partitioned into a number of sub-symbols, where the attenuations are estimated
using only the K, pilots closest to the sub-symbol consisting of K}, subcarriers [8]. In
Figure 3.4, an example is shown for K} = 8 channel attenuations and K, = 5 pilots.
Low-rank approximations can be done for the time-direction filtering as well, but in this
report we have chosen to use an FIR filter instead.

B B x x B x x x4 B | Frequency

Ny

Figure 3.4: Structure of the low-rank estimator in the frequency direction. The K;, = 8

attenuations to estimate are marked with (x), and the K, = 5 pilot symbols used are
marked with (H).

We chose, for the lower complexity, to estimate 12 attenuations in the frequency
direction using 7 pilots and a rank of 2. This results in 2 (1 4+ 7/12) = 3.2 multiplications
per attenuation in the frequency direction. Combined with a 2-tap time filter, this gives

a total of

3.2
Cuow = =~ +2 =28

multiplications per attenuation. For the higher complexity we used 64 pilots to estimate
8 attenuations with a rank of 2. Together with a time filter with 9 taps, this gives

2(1+&
Chigh = # +9=13.5

multiplications per attenuation.
The four investigated estimators are summarized in Table 3.1.

‘ Estimator ‘ Structure ‘ # mult. /att. ‘ # pilots |
2-D Uses the K, closest pilots K, K,
Low-rank 2-D | Estimates K} attenuations using r (1 + %) K,

K, pilots and a rank of r
Separable Separable FIR filter with K KV’: + K; KK,
(frequency) and K, (time) taps
Low-rank Estimates K, attenuations using Nit (1 + %) + K, K, K
separable K, pilots and a rank of r (frequency)

and K, taps FIR filter (time)

Table 3.1: The four channel estimators investigated in this report.
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3.3 Complexity and used pilots

Since all estimators are linear, the channel estimates are linear combinations of a number
of pilots. The number of pilots used depends on the complexity and the type of estimator.
The average number of multiplications per attenuation and the number of pilots the
estimators are based on, are shown in Table 3.2. The estimators use the parameters
described in the previous section. As can be seen in the table, for a fixed complexity
the number of pilots used in the estimates can be increased by posing restrictions on the
estimators, such as separability and low rank. However, because a large number of pilots
are used, many will be only weakly correlated with the estimated channel attenuations
and will not, therefore, contribute much. Thus, considering correlation mismatch in the
design, the estimation may actually be degraded by increasing the number of used pilots.
The main advantage of using many pilots is that the impact of the channel noise is
reduced by a large averaging.

Estimator | Low complexity | High complexity

# mult. /att. | # pilots | # mult./att. | # pilots
2-D 3 3 13 13
Low-rank 2-D 3.0 33 13.5 80
Separable FIR 3.25 10 13.25 175
Low-rank separable || 2.8 14 13.5 576

Table 3.2: Average number of multiplications per tone and the number of pilots the
estimators are based on.

3.4 Design aspects

In order to make the channel estimators attractive to implement, we assume that they
are fixed, i.e., designed for both a fixed channel correlation and a fixed SNR.

The frequency correlation is determined by the power delay profile of the channel
[8] and the time correlation is determined by the Doppler frequency [17]. Neither the
power delay profile, nor the Doppler frequency, are known by the receiver. Using our
channel model we design the estimators for a maximum relative Doppler frequency of 5%
and a uniform power-delay profile over the length of the cyclic prefix. The use of these
worst case parameters follows the recommendations in [6], where pilot-symbol assisted
modulation is analyzed. For the determination of the correlation matrices, see Appendix
B. Contrary to the worst case recommendations for fixed design correlations, the fixed
design SNR should be chosen to a best case. This implies a close to optimal performance
for SNRs below the design SNR where the effects of SNR mismatch are small compared
to the overall noise level. We have chosen the design SNR to 30 dB.

We evaluate the estimators under mismatch, i.e., they are designed for the wrong
channel correlation and SNR. Parameters for the design and the true values of the channel
statistics are shown below in Table 3.3. Note that there is no mismatch in Doppler
frequency. Given the design for 5 % relative Doppler frequency, the performance is
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approximately the same for fp .« < 5 % [6]. The SNR is defined as the transmitted

energy per data bit over the channel noise variance:

E{|h)*} B {|ze]?} 1

SNR =& ;

where b denotes the number of information bits/symbol. In our case we have b = 1.

| Parameter | True ‘ Design ‘
No. of subcarriers 1024 1024
Time dispersion 10 ps 10 ps
Ce /2215 <7 <T, /T, 0<71<T,
Power delay profile { 0 otherwisep { /0 ’ otherwisep
Max. rel. Doppler frequency | 5% 5%
SNR Varying 30 dB

Table 3.3: Design and true values of system parameters. The constant C' is a normaliza-
tion factor.
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Chapter 4

Performance evaluation

We evaluate the performance of the four investigated estimators both in terms of mean-
squared error (MSE) and coded bit-error rate (BER). The MSE is theoretically calculated
while the BER is simulated. To simplify the MSE calculations, we ignore edge effects in
the time-frequency grid and assume that it is of infinite extent. For a system where the
number of subcarriers is much larger than the length of the estimator, these effects can
be ignored.

4.1 Mean-squared error

Since all estimators are linear they can be expressed as

by collecting all used pilots in a vector p and calculating the corresponding estimator
matrix G. The covariance matrix of the error e = h — h can be expressed as [9)

Ree = Run — RupG” — GR{, + GR,,G". (4.1)

For all estimators there will be different mean-squared errors depending on the estimated
attenuation. In order to compare the estimators, we only look at the average error over
all attenuations, i.e.

Kp

1 1
MSE = — 3 Reo(n,n) = —tr (Ree) ,
15y 2 Rslr) = et (R

where K}, is the number of estimated attenuations and ’'tr’ denotes the trace of a matrix
[22].

In Figure 4.1 the MSE for the estimators with the lower complexity level are shown
as a function of SNR. It should be noted that the non-separable estimators have an error
floor that is already visible at low SNR. For the separable estimators the error curves level
out for very high SNRs, but this error floor is hardly noticeable in the figure. Because
there will always be an interpolation error, even in the noiseless case, all the estimators
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Figure 4.1: Mean-squared error (relative to channel power) for the four analysed estima-
tors with the lower complexity (3 multiplications per tone).
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Figure 4.2: Mean-squared error (relative to the channel power) for the four analysed
estimators with the higher complexity (13 multiplications per tone).
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have an error floor. This is due to finite filter lengths. For SNR < 12 dB, the low-rank
separable estimator is 0.7 dB better than separable FIR filters.

The MSE-curves for the higher complexity are shown in Figure 4.2. The error floors
have now been lowered and are only noticeable for the 2-D estimator. Note also that
the mutual ordering is the same as for the lower complexity, i.e. the low-rank separable
estimator is the best and the 2-D estimator is the worst. The difference between the low-
rank separable estimator and separable FIR filters is now about 0.8 dB. In both Figures.
4.1 and 4.2 it can be seen that separable estimators perform better than non-separable.
This was noted in [7], where it was argued that separable estimators provide a good
trade-off between complexity and performance.

4.2 Bit-error rate

The estimators have been simulated in the coded system. In Figure 4.3 the coded BER is
shown for the estimators with the lower complexity (/3 multiplications per attenuation).
As a reference, a system with perfect knowledge of the channel at the receiver is included.
As observed above, all estimators suffer from an error floor, which appears due to the
interpolation. In Figure 4.3 this is only noticeable for the 2-D estimator. The other
estimators do not have this drawback for SNR < 10 dB and they perform better. It is
also noticeable that estimators that perform well in terms of MSE also have a low BER,
which is expected. The best estimator is the low-rank separable estimator, which is only
about 1.4 dB worse than known channel and 0.2 dB better than separable FIR filters.
Note that for MSE, this latter difference was 0.7 dB.

In Figure 4.4, the BER curves for the estimators with the higher complexity are
shown. Again, the BER with known channel is included as a reference.

The low-rank separable estimator is now only 0.7 dB away from known channel and
still about 0.2 dB better than separable FIR filters. In this figure we note that the per-
formance of all estimators has increased, but the ordering between them is not changed,
1.€., the low-rank separable estimator is the best and the 2-D is the worst. The investiga-
tion here suggests that this holds for most complexity levels. However, for other types of
channels and scenarios (such as the uplink), another estimator might be better. Separate
studies are required for these circumstances.
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Figure 4.3: Coded bit-error rate with the low-complexity estimators.
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Figure 4.4: Coded bit-error rate with the high-complexity estimators.
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Finally, the two levels of complexity for the low-rank separable estimator (which was
shown to be the best) are compared to known channel. In Figure 4.5 it can be seen
that the low and high complexity estimators are about 1.4 dB and 0.7 dB away from
known channel, respectively. The BER will decrease with increasing complexity, but to
get really close to the performance of known channel, a very high complexity is needed.
This prompts an analysis of the trade-off between complexity and performance, but this
is beyond the scope of this report.

Bit-error rate

10°

=+ -+ Known channel
10° | — — Low complexity
— High complexity

10

2 3 4 5 6 7 8 9 10
Average Eb/NO [dB]

Figure 4.5: BER of known channel and the separable low-rank estimator of low complex-
ity (3 mult./att.) and high complexity (13 mult./att.).
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Chapter 5

Conclusions

In this report we have investigated four OFDM channel estimators suitable for broad-
casting or for the downlink in a multiuser system. The estimators use pilots, i.e., known
symbols transmitted in certain positions in the time-frequency grid of OFDM. Two classes
of estimators, 2-dimensional and separable, were investigated. Within each class we com-
pared an FIR Wiener filter with a low-rank LMMSE estimator. Through analytical cal-
culations of the MSE and simulation of the coded BER, it was found that the separable
estimators were the best for a fixed complexity. Within the class of separable estimators,
the low-rank estimator was shown to be about 0.2 dB better than the FIR estimator for
the coded BER. Two levels of complexities were investigated, 3 and 13 multiplications
per estimated attenuation, and it was found that for the coded BER, the former is 1.4 dB
from known channel and the latter 0.7 dB. A natural continuation of this investigation
of channel estimation in OFDM systems is a more comprehensive study of the trade-off
between complexity and performance.

We have used a pilot pattern where 6% of the transmitted symbols are known. This
pilot pattern is sufficient to obtain good estimations of the channel attenuations, while
introducing only a small overhead. We have assumed that the receiver can use all pilot
symbols that are transmitted. Generally, this is not the case in the uplink in a multiuser
system, where the channel estimation can be based only on pilots transmitted by a single
user. Hence, for the uplink a separate study must be made to investigate the performance
of the channel estimators.
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Appendix A

Complexity of low-rank estimators

The low-rank 2-D estimator can be formulated as

T

h=G,p=) gglp=) (g p)e
k=1 k=1

since G, is a rank-r matrix. The inner products (g, p) require K, multiplications each,
i.e. a total of r K}, multiplications. The linear combination is over 7 vectors of length K},
1.e. requires 7K, multiplications. Since K} attenuations are simultaneously estimated,
the number of multiplications per attenuation becomes

rK, +rKy _. 1+&
Ky, Kn)
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Appendix B

Correlation matrices

The auto-correlation of the channel model (2.2) is
Roa (Af,At) = E{G(f;t)G*(f — Af;t — At)}

M
n,n'=1
Since all random variables are independent, we have

M

Rec (Af, At) = %ZE{eﬂ“FDmAt} B {emaim)
n=1

= E {8V ple 2mAI Y = Ry (Af) Ry (At),

i.e., the channel correlation is separable. The expectations can be found from standard
Fourier transforms [23]

Ry (At) = E{e®™Pnd% = Jy (2mFp yaxAt)
(1 — e cp(l/Tl-ms+j27FAf))
(L cTolo) (15 7278 )
where Jy () is the zeroth order Bessel function of the first kind. Note that the correlation
function for the uniform power-delay profile can be obtained by letting 7., — oc:
1 — e 927 AfTep

J2rAfle,

Ry (Af) = E{e?8m} =

R;nifﬂrm (Af) —

The correlation between channel attenuations separated by k subcarriers and | OFDM
symbols is

E {hk’,l’hzuk,zuz} =Tt (k)mi (1),

rf (NTS> (1 —_ e*L/Trms) (1 + jQWkTI‘Ins/N)

where

Tt (l) = Rt (l (N + L) Ts) = JO (27TfD,maX (1 + %) l) )
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and Tyms = Tyms/Ts i the RMS-spread relative to the sampling interval. Since the LS-
estimates at pilot positions are

Ykl N,
Prg = —— = hp +—,
T Lkl

the cross-correlation and the auto-correlation are
E{hegpyypt = rpk—K)r (1=1)

FE {pk7lp2',l'} = Ty (k — k/) Tt (l — ll) + O'iE {

}6@—#J—H.

|z |

Using these functions, the auto-correlation R,, and the cross-correlation R;, can be
calculated.

32



Bibliography

[1] Radio broadcasting systems; Digital Audio Broadcasting (DAB) to mobile, portable
and fixed receivers. ETS 300 401, ETSI — European Telecommunications Standards
Institute, Valbonne, France, February 1995.

[2] Tristan de Couasnon, Raoul Monnier, and Jean Bernard Rault. OFDM for digital
TV broadcasting. Signal Proc., 39(1-2):1-32, September 1994.

[3] Digital broadcasting systems for television, sound and data services. European
Telecommunications Standard, prETS 300 744 (Draft, version 0.0.3), April 1996.

olker Engels and Hermann Rohling. Multilevel differential modulation techniques

4| Volker Engels and H Rohling. Multilevel diff ial modulati hni
(64-DAPSK) for multicarrier transmission systems. Eur. Trans. Telecommun. Rel.
Technol., 6(6):633-640, November 1995.

[5] Michael L. Moher and John H. Lodge. TCMP — A modulation and coding strat-
egy for Rician-fading channels. IEEE J. Select. Areas Commun., 7(9):1347-1355,
December 1989.

[6] James K. Cavers. An analysis of pilot-symbol assisted modulation for Rayleigh-
fading channels. IEEE Trans. Vehic. Technol., 40(4):686-693, November 1991.

[7] Peter Hoher. TCM on frequency-selective land-mobile fading channels. In Proc.
Tirrenia Int. Workshop Digital Commun., Tirrenia, Italy, September 1991.

[8] Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek, Sarah Kate Wilson, and Per Ola
Borjesson. OFDM channel estimation by singular value decomposition. Research
Report TULEA 1996:18, Div. of Signal Processing, Lulea University of Technology,
September 1996.

[9] Louis L. Scharf. Statistical signal processing: Detection, estimation, and time series
analysis. Addison-Wesley, 1991.

[10] A. Peled and A. Ruiz. Frequency domain data transmission using reduced compu-
tational complexity algorithms. In Proc. IEEE Int. Conf. Acoust., Speech, Signal
Processing, pages 964-967, Denver, CO, 1980.

[11] S. B. Weinstein and Paul M. Ebert. Data transmission by frequency-division mul-
tiplexing using the discrete Fourier transform. IEEE Trans. Commun., COM-
19(5):628-634, October 1971.

33



[12]

[13]

[14]

[15]

[16]

John A. C. Bingham. Multicarrier modulation for data transmission: An idea whose
time has come. IEEE Commun. Mag., 28(5):5-14, May 1990.

A. Miiller. OFDM transmission over time-variant channels. In Proc. Int. Broadec.
Conv., number 397, pages 533-538, Amsterdam, Netherlands, September 1994.

Mark Russell and Gordon Stiiber. Interchannel interference analysis of OFDM in a
mobile environment. In Proc. IEEE Vehic. Technol. Conf., volume 2, pages 820-824,
Chicago, 1L, July 1995.

Stephen G. Wilson. Digital modulation and coding. Prentice-Hall, New Jersey, USA,
1996.

Peter Hoher. A statistical discrete-time model for the WSSUS multipath channel.
IEEE Trans. Commun., 41(4):461-468, November 1992.

William C. Jakes. Microwave mobile communications. Classic Reissue. IEEE Press,
Piscataway, New Jersey, 1974.

J.G. Proakis. Digital communications. Prentice-Hall, 3rd edition, 1995.

A.V. Oppenheim and R.V. Schafer. Discrete-time signal processing. Prentice-Hall,
1989.

Gordon L. Stiiber and Mark Russell. Terrestrial digital video broadcasting for mobile
reception using OFDM. In Proc. Globecom, volume 3, pages 2049-2053, Singapore,
November 1995.

Dan E. Dudgeon and Russell M. Mersereau. Multidimensional digital signal process-
ing. Prentice-Hall, Englewood Cliffs, NJ, 1984.

G.H. Golub and C.F. van Loan. Matriz Computations. North Oxford Academic,
Johns Hopkins Academic Press, 2nd edition, 1989.

M. Abramovitz and [.A. Stegun. Handbook of mathematical functions with formulas,
graphs and mathematical tables. Number 55 in Applied Math. Series. Nat. Bureau
of Stand., Washington, DC, USA, 1964.

34



