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A BPSK/QPSK Timing-Error Detector for Sampled 
Receivers 

Abstract-A simple algorithm for  detection of timing error of a 
synchronous, band-limited, BPSK or QPSK data stream is proposed. The 
algorithm requires only  two samples per symbol for its operation. One of 
the two samples is  also used for the symbol  decision. Derivation of the s- 
curve reveals a sinusoidal shape. 

I. INTRODUCTION 

S ,  AMPLED implementations  of  receivers for digital data 
signals are growing more popular as components-notably 

digital signal processors-improve in capability. There is  a 
need for sampled  algorithms to replace the continuous-time 
methods that have  predominated  heretofore. 

This  paper  introduces an algorithm for timing error detec- 
tion in a  receiving  modem. Algorithm operations are simple 
and only two samples of the signal are required for each data 
symbol. Moreover,  one of  the two samples  also  serves for the 
symbol  strobe (i.e., the  sample on which the symbol decision 
is  made). 

The algorithm  is intended for synchronous,  binary, base- 
band signals and for BPSK or QPSK (balanced, nonstaggered) 
passband signals, with approximately 40-100 percent  excess 
bandwidth. 

Other sampled timing  algorithms  have .been presented 
earlier. Mueller  and  Muller [l] wrote  a  classic explanation of 
timing recovery  based on just  one sample per symbol and 
requiring  decision-directed  operations.  Note that correct deci- 
sions in .a  carrier system  depend upon prior acquisition of 
carrier phase. 

By contrast, the algorithm  introduced  in  this  paper  is not 
decision directed. Furthermore, clock recovery  is  quite 
independent of carrier  .phase. 

Other papers [2]-[5] have foliowed the lead of [l]. A 
different  scheme,  dubbed  the wave difference method 
(WDM), was proposed in [6]. In  essence,  the WDM finds  the 
average location of zero-slope  of  the  received, filtered signal 
pulses.  Numerous  samples per symbol  appear to tie required 
for the original method of [6]. 

Reference [7] extends  the WDM, shows how to reduce it to 
two  samples per symbol,  suggests implementation details, and 
provides  analyses of performance. Neither of the two sample 
points in [7] coincides with the  decision  strobe  point.  Either 
four samples per symbol must be  taken or else (as in [7]) the 
two  samples per symbol must be  interpolated to  an effective 
four samples per symbol.  (Interpolation in [7] is accomplished 
with a  digital  .delay  of a quarter-symbol  interval.) Both [6] and 
[7] treat  clock  recovery only for baseband signals. 

The method introduced in this paper, .although developed 
independently, has resemblances to the WDM of [7]. Its major 
points of difference are: only two samples per symbol are 
employed, without explicit  interpolation; one sample  coincides 
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with the  decision  instant;  and carrier signals are handled as 
well as baseband signals,. 

References [I] and [7] contain  informative  summaries of 
analog clock-recovery  methods, with references. 

This  paper is organized as follows.  A model of  a  receiving 
modem is shown in Section I1 add some  characteristics of the 
new algorithm are stated in Section 111. A baseband version of 
the  algorithm  is  developed  in Section IV:  Derivation of the S- 

curi.e (sinusoidal for a band-limited signal) is relegated to 
Appendix A, while Appendix  B  demonstrates that the al- 
gorithm is  independent  of carrier phase. 

11. RECEIVER MODEL 
Refer to Fig. 1 for a  block  diagram of a typical I-Q 

receiving  modem.  A passband signal  is  .demodulated to 
baseband in a  pair  of  quadrature-driven  mixers.  Phase of the 
local carrier must be  adjusted to  agree with that of the  signal. 
The necessary carrier-recovery  branch  is omitted from the 
diagram  and is irrelevant to  the clock  algorithm and discus- 
sion. 

Data  filters  follow  the  mixers; they perform  receiver 
filtering to shape  signal  pulses, minimize noise,  and  suppress 
unwanted mixer  products. 

Our interest  is in sampled  receivers. We  do not specify the 
sampling point  other than to say that the filter  outputs are 
available  only in sampled form  as the  pair  of  real sequences 
{y,( ) } and {ye( ) } . Timing  information must be retrieved 
from  these sequences. 

Symbols are transmitted  synchronously, spaced by the  time 
interval T. Each  sequence will have t*o samples per symbol 
interval and the samples will be time-coincident between +e 
sequences. One sample occurs at the  data  strobe  time and the 
other  sample  occurs midway between data  strobe  times. 

The index r is used to designate symbol number. It is 
convenient to denote  the  strobe values of the rth  symbol-  as 
yl(r) and ye('): As  a  formalism, we denote  the values of the 
pair of samples  lying midway between the (r - 1)th and the 
rth strobes as yl(r - 1/2) and yQ(r - V2). 

A  timing error detector  operates upon samples and gener- 
ates one  error sample ut@) for each  symbol. The actions of 
that detector are the main focus  of  this  paper. 

The  error sequence  is smoothed by a  loop  filter and then 
used to adjust  a  timing error  corrector. This  paper  treats only 
the  detector  and  is not concerned with the  loop  filter  nor with 
the error  corrector. 

111. DETECTOR CHARACTERISTICS 

is  derived  in  the  sequel.  This  algorithm is suitable for both 
tracking  and  acquisition  modes of operation. It is  proven  in 
Appendix B that ut@) is  independent  of carrier phase, so that 
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Fig. 1 .  Typical modem  (simplified block diagram). 

timing lock  can  be  achieved without depending upon prior 
carrier phase lock. 

If BPSK is employed, and if the modulation is in the I 
channel,  then the Q channel terms contribute no information 
once  carrier phase  lock has been  achieved. Only noise would 
come  from the Q channel  after carrier lock. Therefore, the full 
algorithm of (1) would be needed for best -BPSK timing 
acquisition, but the  algorithm should be, reduced to  just the I- 
channel terms  after  carrier lock is achieved.  Similarly,  a 
baseband  signal  consists of just  one channel, cartier acquisi- 
tion, is not an issue, and so only the {yl( )} terms  are 
applicable. 

If  a  QPSK  signal  is  being  processed, then both I and Q arms 
contribute  useful  information  after carrier lock; both parts of 
(1) should be retained for QPSK  clock  tracking. 

An analysis of the detector  characteristic of (1) is given in 
Appendix A,  where it is  shown  that  a band-limited signal 
produces  a  sinusoidal s-curve.  Once  the data-pulse  shape  is 
known, that  analysis can be  applied to determine  the gain of 
the  detector. 

The method proposed here  is thought to be  applicable for 
excess  bandwidths of the signal of approximately 40-100 
percent;  this  range  is  representative of satellite communica- 
tions. It is  known  that the proposed  algorithm has rapidly 
deteriorating  qoise  performance with narrower bandwidth, 
partly because  the efficiency of  clock  regeneration falls off (as 
will be further noted in Appendix A) and partly because of 
increasing self noise.  This  feature  is  inherent to regenerators 
with quadratic  nonlinearities.  A  different  algorithm,  based on 
a  harder  nonlinearity, would be needed for narrow  band- 
widths. (But we think the independence of carrier phase is 
unique to a  square-law  nonlinearity.) 

A physical explanation  can  be  ascribed to (1). The detector 
samples  the  data  stream midway between  strobe  locations in 
each of the I and Q channels. If there  is  a  transition between 
symbols,  the average midway value should be zero, in the 
absence of timing error. A  timing error gives  a  nonzero 
sample  whose  magnitude  depends upon the  amount of error, 
but either  slope  is  equally  likely at  the midway point so there  is 
no direction  information in the sample  alone. 

To sort out  these  differevt  possibilities,  the  algorithm 
examines the  two  strobe values to either  side of the midway 
sample. If there  is no transition, the  strobe values are the 
same, their  difference  is zero, and so the midway sample  is 
rejected. (No timing  information  is  available in the  absence of 
a  transition.) 

If a  transition  is  present,  the  strobe  values will be different; 
the  difference  between  them will provide  slope  information. 
The product of the slope  information and the midway sample 
provides  timing-error  information. 

It may be worthwhile to use the signs of the strobe  values 

instead of the  actual  values. ,That eliminates  the  effects of 
much noise. If all data  filtering  has been performed  prior to  the 
strobe  point,  then  the  sign of the  strobe  value  is ,he optimum 
hard decision on the symbol and the  algorithm effectively 
becomes decision  directed.  This  expedient  is known to 
improve  tracking capability. (But acquisition performance 
may suffer in a decision-directed operation.) Note that use of 
the strobe  signs, instead of  actual  values,  eliminates  the need 
for actual multiplications in  the algorithm-an attractive 
feature  for  digital  processors. 

The decision-directed version of the  algorithm will be 
recognized as very similar to the digital transition tracking 
loop of Lindsey and Simon [8]. 

We can see  a  source of self noise in either  version of &is 
algorithm. If the  excess bandwidth is  less than 100 percent,  the 
zero crossings of data  transitions do not all lie midway 
between the strobe  points. There is  a  scatter  of  crossing  points, 
centered on the midway point. The average  location  is correct, 
but any individual trajectory  can depai-t from the  average, 
causing self noise. 

One last comment  is  appropriate in this  section: The 
algorithm takes its  information from  three different  sample 
points in order  to produce one timing-error  point. There is  a 
delay in computing the  error sample. The timing  can  be 
adjusted within the three-point  span of the algorithm, so the 
timing error  at the  last  point in the span does not necessarily 
remain the same as the  error  at the  first  point.  Equivalently, 
the  algorithm  contains  memory.  These  features must be taken 
into  account in the analysis  of the tracking  loop. 

Iv. DEdrVATiON OF ALGORITHM 
-This section develops the timing  detector by physical 

reasoning from  data waveforms.  Past  experience with timing 
recovery in analog  systems is used as a  guide for the all-digital 
detector. 

Waveform  Approach 
We start  out with the  problem of recovering  timing 

information from a  baseband data stream. To that end;  we 
postulate the existence of an equivalent  analog,  baseband 
signal underlying  the  digital  sequence  that actually occurs  in 
the  processor. It is  easier to visualize  operations on  the 
continuous  signal than on the  discrete  sequence. Any zero- 
memory  operations  performed on the continuous  signal will 
commute with sampling, so that  equivalent  results are obtained 
by performing the  same operations on the  discrete  sequence. 

A, set of typical waveforms  is  shown in Fig. 2 .  Line  A  shows 
symbol boundaries (of width T seconas)  and  line B shows 
locations of the  strobes: one  per symbol in the center of each 
symbol interval. 

Line C shows  a  hypothetical baseband signal x(t).  Examina- 
tion will show  that  the  Nyquist-1  criterion  is met and that the 
signal has been moderately band limited.  Actually,  the  signal 
pulses used for  the illustration  were  raised  cosines, which are 
very  close to band-limited Nyquist  pulses With 100 percent 
excess  bandwidth. 

Simple Rectifier: One well-proven method of regenerating 
a  clock  wave from data  stream  is to pass the stream  through  a 
rectifier [9 ] .  We use that expedient as a starting  point. 

A  square-law  rectifier has several  advantages: 

SNR [9]. 
0 Its noise performance is near-optimum,  especially at low 

4 A pure sinusoidal input results in a  pure sinusoidal output 
at double  the  frequency. 

A  square  law is almost the only nonlinearity that is 
mathematically tractable. 

Square-law  rectifiers in both I and Q arms will recover  a 
clock wave independent of carrier phase-an important con- 
sideration for acquisition. 
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Fig. 2.  Timing waveforms. 

We will start  the  derivation with a  square-law  rectifier. 
Line D of  Fig. 2 shows  the  data  stream  after  square-law 

rectification.  Evident in the  picture are a dc component (an 
inevitable  output  from  a  rectifier)  plus  a  double-frequency 
component  at  the  symbol  rate.  This protoclock component  is 
equivalent to a pure  sinewave at the  symbol  frequency, 
interrupted by gaps  when  there are no  transitions in the  data. 
An  analog  clock-recovery  scheme  would  employ  a  narrow- 
band filter or a  phase-lock loop  to  extract the  desired  clock  line 
and  reject  the  various  disturbances. 

The  same  approach  is  feasible in a  digital  system,  but  is not 
very  convenient.  Proper  operation with a  filter or PLL scheme 
would necessitate  good  reconstruction of the  protoclock  and 
that  cannot be done with just  two samples  per  symbol. (Two 
samples  per  cycle  of  a  sinewave is the  upper limit of the 
sampling  theorem;  the  protoclock  has  a  bandwidth  wider  than 
1 / T  and  cannot  be  reconstructed  from  samples  at  a  rate of 
2/T.)  

Our objective i s  not to reconstruct  the  protoclock,  but to 
determine  timing error-which does not inherently  require 
protoclock  reconstruction. 

Examining  line D, it  can  be  seen  that  samples  taken  at 
locations of k 1/4T away  from  the  strobe  point fall at equal- 
amplitude,  but  opposite-slope  points on the useful portions of 
the  protoclock.  When  timing is correct,  the  difference  between 
those  two samples-labeled E for  early  and L for late-will be 
zero (in those  locations  where a data  transition  exists). If the 
signal  is  delayed with respect to  the  sampling, then the  value of 
one  sample  increases  and  the  other  decreases.  The  difference 
between  sartiple,values  is  a  measure of timing error. 

To formalize  the  method,  assign  an  index r to each  timing 
sample, so that  the  two  timing  samples in the rth symbol 
interval. are denoted E(r) and  L(r). This  introductory  al- 
gorithm  would  be 

ut(r)=E(r)-L(r-l) 

= x 2 ( ~ + ( r - 1 1 / 4 ) T ) - x 2 ( ~ + ( r - 5 / 4 ) T )  (2) 

whereas  the rth strobe is taken at t = rT + r ,  and 7 is  the 
timing  shift  from  desired  delay. 

Note  that in the absence of additive noise,  and for the 
idealized  waveforms  used in the  example,  that u,( ) will be 
zero when transitions are missing.  That  festure  avoids 
significant self noise. 

A slightly  different  algorithm, E(r )  - L(r), could have 
been employed  instead.  It  would  also  provide  a  measure of the 
timing error and  a  successful  loop  could be  based upon  it. 
However,  a  large  error  sample is  generated by this  algorithm 
for many locations  where  there are no  transitions.  It  is  true that 
an  opposite-sign  error-sample  is  certain to  be  generated  later 
and  that  the  two  large  samples  cancel  out in the  long-term 
tracking.  However,  in  the  short term, the  large  error  samples 
contribute to self noise. For that  reason,  the  selected  algorithm 
is  superior  to  the  alternative.  The  same  choice, with the  same 
self-noise  consequences, will reappear in subsequent  develop- 
ments.  Without  further  comment,  we will select  the  sample 
pair  giving  the  best  rejection  of self noise. 

The algorithm of ( 2 ) .  is workable.  From  experience with 
continuous  systems [lo] we  can  anticipate  that  satisfactory 
performance  could  be  attained in typical communications 
links.  However,  it  has  two  deficiencies  that  should  be 
remedied. 

Although it needs  only  two  samples  per  symbol,  neither 
of  those  samples  is  the  data-strobe  sample. Therefore,, the 
postfilter  operations  require at least  three  samples  per  symbol, 
thereby  placing a greater  computing  burden on the  data  filters. 

0. No self noise  arises  with  the  idealized  waveforms of the 
illustration. But that  happy  condition  occurs  only  because  the 
illustrative  waveforms are time-limited.  When  band-limited, 
time-extended  waveforms are  used,  then self noise will arise  to 
some  extent. 

Let  us  attack  the self noise  first. 
It is well  established [l 13 that  a  suitable  prefilter in front of 

the rectifier,  plus  suitable  postfiltering,  can  suppress self noise 
completely.  That  is  the  next  approach  examined. 
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Prefilter Method: Line E shows  the output x,(t) of  a 
prefilter which has x(t) ,  from line C,  as its input. For time- 
limited pulses [12], x,(t) is simply the  derivative of x(t). For 
band-limited pulses, the spectrum ofx,(t) is band limited and 
symmetric  about the Nyquist frequency 1 /2 T (See [ 1 11 ) . 

A  protoclock  is  generated by rectifying x,(t), as illustrated 
in line F. For  the particular, idealized waveforms used in Fig. 
2, it turns  out  that  Line  F  is simply the inversion and level shift 
of line D. The  same arguments on sampling and the same 
timing algorithm are appropriate. 

In  the  absence of a  postfilter, it is not apparent that the 
prefilter  affords  self-noise relief for band-limited waveforms. 
A more detailed  analysis would be needed to demonstrate that 
feature.  Instead, we merely note that the idealized prefilter'for 
the idealized  illustrative  waveform has not relieved the shift of 
the  timing  samples from  the  strobe location. 

A  differentiator, for time-limited  pulses, or an optimum 
prefilter, for band-limited pulses,  it  is likely to be  rather 
complicated and would add unduly to  the computation burden. 
It has  been  shown [13] that  fairly c k d e  approximations to 
ideal prefilters  provide  substantial  improvement of self noise. 
Therefore,  we compromise optimality in  the  interest of 
simplicity and  restrict the method to very  simple  prefilters. 
, Delay Differencing: Let the  prefilter or differentiator be 
approximated by the operation 

x d ( t ) = x ( t ) - x ( t - t d )  (3) 

where td is  a  suitably  chosen  delay  time. In  paiticular, if td = 
T/2 ,  then the  average delay of xd is T/4-which is the time 
shift  between the  strobe point  and the timing  samples  that  has 
arisen  in the  two previous  approaches. 

Line G shows the result if the signal of line  C is delay- 
differenced with a  delay  of td = T/2. 'Comparison with line E 
shows  similar,  but not identical  waveforms. 

The delay-differenced  waveform  is passed through  a 
square-law  rectifier,  yielding line H, for  the example wave- 
form.  Once  again,  the protocloc,k appears and timing-error 
information can be  retrieved by the algorithm 

u f ( r ) = E ( r ) - L ( r -  1). (4) 

However, now observe that E(r)  coincides with the strobe 
time for  the  rth symbol; the delay  in the differencing  network 
shifted the time for  the timing  samples  and  eliminated *e need 
for a  third  sample. One timing  sample now coincides with the 
data strobe and  the other falls midway between data  strobes. 
(The strobe locations are  carried on eacp waveform  abscissa as 
vertical  tick marks in Fig. 2 . )  

In this  roundabout  manner we have  devised  a  timing-error 
detector  algorithm  that  requires  only two samples  per  symbol 
(one  sample  coincident  with the  data strobe),  that has some 
self-noise rejection properties, and  that  can  be  performed with 
minimal computing burden (one  subtraction  and one squaring 
per symbol  interval). Now let  us ,see what  improvements are 
possible. 

Formai Reductions 
In  this  section we  perform formal  algebraic  manipulations 

on  the algorithm 'expression and  discover that there are 
elements  hidden  in the algorithm  that  contribute no useful 
output.  Since  their  presence  could  only  generate self noise, 
they are eliminated &nd a  stripped  algorithm  is  derived  instead. 

S tg t  with 

xd( t )=x( t ) -x( t -  T /2)  ( 5 )  

x$ ( t )=x2( t )+x2( t -  T / 2 ) - 2 x ( t ) x ( t -  T/2) .  (6) 

Upon sampling at t = rT + r and rT + r - T/2, we obtain 

E(r)  =x2,(rT+ 7) 

= x2(7 + rT)  + x2(r + ( r  - 1/2) T )  

-2X(7+FT)X(T+(r-'1/2)T) 

~ ( r - 1 ) = ~ 2 ( r + ( r - - / 2 ) T ) + x ~ ( r + ( r - l ) T )  

- 2 x ( r + ( r - 1 / 2 ) T ) x ( r + ( r - l ) T ) .  -(7) 

Let the  algorithm be 

u f ( r ) = L ( r -  1) -E ( r ) .  (8) 
The  reversal of sign has no significance in  the  formal 
manipulations or in the  processor's  computation burden, but 
assures negative slope at the  tracking point of the detector 
output.  See  Appendix A. 

Both elements of (8) contain  a  term x2(7 + (r - 1/2)T); 
the  subtraction  cancels  those terms. Collecting terms after  the 
cancellation, the algorithm  is  composed of the elements 

u, ( r )=x2(7+(r -   l )T ) -x2 ( r+rT)  

+ 2 x ( r + ( r - 1 1 / 2 ) ~ ) { x ( r + r ~ ) - x ( T + ( r - l ) ~ ) } .  (9) 

Useful output  of the algorithm  is  the average over many 
samples, not the value of an isolated sample.  Denote Uf(r)  = 
Avg, ut(r) as  the average over many samples, so that 

Vf(7) = Avg { x2(r + ( r  - 1) T }  - Avg { x2(7 + rT)}  
+ 2  Avg { ~ ( 7 + ( r - ~ / 2 ) T ) ( x ( 7 + r T ) - ~ ( 7 + ( r - l ) T ) ) } .  

(10) 
The first two  terms must be  equal;  the  ensemble average 
cannot  depend  upon the index r because  the  underlying  signal 
is  cyclostationary. Therefore, those  averages must cancel. The 
presence of the x*( ) terms does not contribute to the useful 
average  output; we must suspect  them as potential sources of 
self ,noise.'  Therefore,' let us eliminate  them. 

The remaining terms' are of the  form 

U , ( r ) = X ( 7 + ( T - 1 / 2 ) T ) { X ( 7 + r T ) - X ( 7 + ( r - 1 ) T ) }  

= x ( r - l h ) { x ( r ) - x ( r -  l)}. (1 1) 

This  is the proposed timing-detector algorithm for real, 
baseband signals.'Two such computations, one each from the I 
and from  the Q channel, are added when processing  a 
demodulated carrier signal. The  sum'is  the'algorithm of  (1). 

APPENDIX A 

DERIVATION OF S-CURVE 

Satisfactory  design of .  the  timing  loop  requires  that  the 
detector characteristic-average output  versus  timing error 
7-be known. That is derived 'for  the baseband algorithm  of 
(1 1)  in  this  Appendix.  A  phase-independent  extension to the Z- 
Q algorithm of (1)  is demonstrated  in  Appendix B. 

Let the underlying,  time-continuous  signal  be  a PAM 
stream with the format 

x ( t )  = C @ p g ( t - P T )  (12) 

where  this  summation,  and  those to follow,  is  assumed to be 
doubly infinite. 

The sequence {ap}  is taken from a  binary  library  where a, 
= k 1 .  We will assume that the ap have zero mean and are 
uncorrelated. That  is, 

- E(ap)=O 
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E(apaq) = 6,,E(a3 = aPq. (13 )  so 
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The function g ( t )  is the shape  of  the  filtered  signal pulse. It 

Apply (12) to (1   1 )  to obtain a T 
has Fourier transform G( f ) .  a(r, 4 )  =' j G(v)ejruT 

ut (r )  = x apg(r+ ( r -  Vz) T - p T )  
P 

(14 )  
Perform  the indicated multiplications and collect terms, 
thereby obtaining double  sums  containing  products aPaq and 
spas. Take the  expectation over the  data  ensemble to  arrive at 
the  average  output of the detector: 

U,(d=E{Ut(r ) )  
= x g(r+ ( r -  ' / z )  T - p T ) [ g ( r +   r T - p T )  

P 

- g ( r + ( r - 1 ) T - p T ) ]  

=e g ( r + ( q - l / z ) T ) g ( r + q T )  
4 

-e g ( r + ( q - W T ) g ( 7 + ( q -   1 ) T )  ( 1  5 )  
4 

where q = r - p .  
Consider  a  partial  term of the  form 

In the last line we have imposed the  restriction G ( f )  = 0 for 
I f 1  2 1/T to take account of band limiting and to simplify the 
analysis. That restriction  assures that there  is no nonzero 
overlap between G ( f )  and G((m/T)  - f) for Iml > 1. The 
only contributing values of m are 0 and & 1. 

In similar manner,  define 

P(7) = g(7 + (4  - 1/21 T)g( r+  (q - 1 )  T) 
and, undertaking the  same manipulations already shown for 
(Y(T), we obtain 

m 

* l G(v)G(;-v)e-jrvT  dv. (23) 

The quantity of interest is 
m 

( ~ ( ~ ) = g ( 7 + ( q - - / z ) p ) g ( ~ + q T ) =  1 A(f)ejZuf  df. Ut(7) = i 4 7 )  - P(7)) 
- m  

(16) 4 

Then = 2 j ( l / T )  ( -  l)mejzrmr/T 
A ( f ) =  1 g(r+(q-1/z)T)g(7+qT)e-jZ*fr  dr m 

= 1 g ( r + ( q -  1/z)k)e-jZrfl s G(v)ejZru(r+qT) dv dr * s C ( f ) G ( T - f )  sin nfT df.  (24) 

1 G(v)ejZTuQT s g ( r + ( q -  1/2)T)e-jzur(f-u)  dr  dv Let us  examine  this  expression separately for each of the  three 

(17) m = 0: 
different  contributory values of m. 

where all integrals are  over double-infinite  limits until 
otherwise  stated. 

Let 7' = 7 + (q - %)T, whereby If g ( t )  is  real, then 

4 

It can  be  demonstrated that 
m m 

q =  - m  m= --m 

+ e- jZrr /T  io G ( f )  
- l / T  

* G (  -$- f )  sin nfT df)  



428 IEEE  TRANSACTIONS ON  COMMUNICATIONS, VOL. COM-34,  NO. 5, MAY 1986 

where  the  asymmetric  limits  come  about  because one'  of the 
shifted G( ) terms  vanishes  in a region  where G ( f )  itself is 
nonzero. 

This  expression is valid  for  any  band-limited g(t);  it' can  be 
evaluated by substituting G ( f )  and working out the integrals 
of (25). 

Better  insight is gained by resolving G ( f )  into its even and 
odd components.  For g( t )  a real  function we find 

G ( f  1 = Ge ( f )  +jGo(f) 

where G, and Go are both purely  real, with properties 

G A f )  = G e (  -f) 
Go(f) = - Go( - f  

Further,  define  the  shorthand  notation 

+Ge( f )Go  -- f sin nf T df ( k  )) 

+Ge(f )Go(  -;- f ) )  sin rf T df. (27) 

By the  even  and  odd  symmetry,  it  can  be  shown  that 

GR+ = - GR- = GR 

GI+ = GI- = GI. 

Applying all of this to (25) gives 

Ut(r)=  -2j(l/T){e'2TT/T (GR+ + ~ G I + )  

+ e - j 2 a ~ / T  (GR- + GI-)} 

= (4 /T) {  GR .sin .2nr/T- GI cos 2nr/T}  

= - (41 T)(  G: + Gi )  l l 2  sin (2~7- /  T -  $) (28) 

where $ = tan-I(GI/GR) is a timing  shift  (in  radians)  caused 
by departure of g ( t )  from  even  symmetry.  Observe  that  the 

-0 .5 0 0 . 5  1 '  1 . 5  
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2 
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I 

I I I I I f f  
-0 .5 0 0 .5  "Normalized Frequency 

Fig. 3. Diagram of spectral overlap. 

error  characteristic  has  a  sinusoidal  shape:  a  consequence of 
the band limiting. 

Consider  a  special  case in which g ( t )  is even.  Optimum  data 
filtering will match the  data  filter  to  the  incoming  pulse 
waveshape  and  that will always  result  in  an  even g(t). If g( t )  is 
not even,  the  receiver  is not matched to  the  incoming  pulse.  In 
many receivers,  the  filter will be at  least  approximately 
matched  and so g(t) will be  nearly  even. 

If g(t) is even,  then Go(f)  = 0 for  allf, so G I ( f )  = 0 also. 
Furthermore, $ =, 0 and  the  average  detector  output  reduces 
to 

Ut(r) = - ( ~ / T ) G R  sin 2 m / T  

= - ( 4 / T )  sin 2 m / T  j G ( f )  
1/T 

0 

The  average  vanishes  at r = 0, corresponding  to  the  center of 
each  pulse,  where  the  eye  opening is maximum. 

In (29), the  integrand is proportional  to  the  product 
G ( f ) G ( ( l / T )  - f), which is sketched  in  Fig. 3. Only  the 
region of overlap  between  these  two  functions  contributes  to 
protoclock  generation. As excess  bandwidth  decreases,  the 
overlap  region  shrinks  and  the  gain of the  detector  becomes 
very  small.  Note how sin ?rf T (induced by the  delay 
differencing)  weights  the  overlap  region  preferentially. 

APPENDIX B 

EFFECT OF CARRIER  PHASE ERROR 

' It is desirable  that the timing  loop  be  capable of acquiring 
lock  without  depending  upon  prior  lock of the  carrier  loop. In 
this  section we show  that  the  proposed  algorithm of (1) 
provides  the  same  timing-error  information  irrespective of 
carrier  phase.  Therefore,  timing  can  be  established  prior  to 
carrier  phase  lock. 

Represent  the  fictitious,  time-continuous,  complex  signal 
out of the  data  filters  as 

w ( t ) =  {a( t )+ jb( t ) }e jA8 (30) 

which has  the  rectangular  components 

x l ( t ) = a ( t )  cos Ae-b( t )  sin A0 
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x2(t) = a(t)  sin A8 + b(t)  cos A8 (31) 
where A0 is the  carrier-phase tracking error, considered 
arbitrary but fixed. For acquisition purposes, or for a two- 
dimensional QPSK signal,  the timing-detector algorithm is 

ut( t )=xl( t -   T/2){x1(t)-x,( t -  T ) }  

+ ~ 2 ( t -  T / 2 ) { ~ 2 ( t ) - x z ( t - T ) } .  (32) 
That  is, the algorithm  of (1 1)-expressed here in the continu- 
ous-time domain-is applied to both arms of the baseband 
signal and the two computations are summed. 

Substituting (31) into (32), and performing the appropriate 
trigonometry yields 

ul ( t )=a( t -  T /2 ) {a ( t ) -a ( t -  T ) }  

+b( t -  T / 2 ) { b ( t ) - b ( t -  T ) }  ( 3 3 )  
which is quite  independent of AO. All terms containing A0 
have either  cancelled, or else  combined  according to sin2 A0 
+ cos2 A0 = 1. The two-arm  algorithm  delivers the same 
error indication irrespective  of carrier phase. Therefore,  the 
timing loop  can  lock prior  to locking, or even  closing, of the 
phase loop. 
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