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On the Information Function of an
Error-Correcting Code

Tor Helleseth,Senior Member, IEEETorleiv Klgve, Senior Member, IEEE
and Vladimir I. LevenshteinMember, IEEE

Abstract—The information function e, of a code is the average the code
amount of information contained in % positions of the codewords. Cv = {c lce C}
Upper and lower bounds on the information function of binary X=X ’
linear codes are given. The average value and variance of the For y € Cx, let
information function over all [n, k] codes are determined.
. Nx(y) = [{e€ C'lex =y}|.

Index Terms— Information function, linear code, support It is clear that
weight, weight hierarchy.

S Nx(y) =[C]

I. INTRODUCTION yelx

. . . . for any X € S™.
E |(;1trod_uc§ ?_nddstudyhthe information funcppg ofa . If all codewords are equally probable and the intruder
_ code. Itis efine as the average amount of in orma_t| serves a vectagy in the positions inX, then he obtains
contained inh positions of the codewords. We see possible
N o ; |C|
applications of the function in the study of decoding as well log
as in cryptographic applications of error-correcting codes. ) ] Nx(y) . o
A possible cryptographic application is the following. Ablts_qf |nfc_>rmat|on. The expected (average) informatiomin
code C to be used for transmission of data is chosen BPSitions is therefore <
random from the set of all codes of lengii{or some suitable — e (O 1 1 loe ¢
subset, e.g., the set of all permutations of some fixed code). " en(©) Z | |y€zC: o8 Nx(y)
. . . p.e
Suppose an intruder is able to obseivef .the” pqsmons .YVe call ¢;, the information functionof the code andeg,
of a codeword. The expected amount of information he will he inf . fi
obtain isey,. If we, as code designers, want him to get as littlé!: .~ * " the information profile . :
) h ' ’ . }Ne note that by (1) and the convexity of the logarithm we
information as possible, we must choose codes with as smaét
e;, as possible. g 1
For information set decoding (see e.g., [2, pp. 102-131]) en > v Z log |Cx| (2

we want to have codes with many information sets, that is, y Xcs,
[n, k] codes with many sets df positions containing all the with equality if and only if all Nx(y) are equal fory € Cy.
information in a codeword. Therefore, to some extent, we hau@the case of a linedin, k] codeC, for any X the codeCx
a design criterion which is the opposite of the criterion for thig 3 linear code of some dimensiér., and Ny (y) = 2~ kx

(1)

(Z) XeS,

cryptographic application. for all y € Cx. Hence
In this paper we consider upper and lower bounds on the 1
information on binary linear codes. Ch = m Z kx.
h Xes,
Il. NOTATIONS AND BACKGROUND |INFORMATION In this paper we study the information function of linear codes.

Let G be a generator matrix fof. Since permuting the
positions of C' does not change the information profile, we
may assume that has the form(f; | P), wherel, is the
k x k identity matrix. ForX € S;,, Gx denotes thek x A
matrix containing the columns @¥ in the positions ofX. By
ex = (¢, CiyyevnyCiy ) definition, Gx has rankkx and its rows generat€'x.

For a binary code” of lengthn and a setY € ", we define  1he supportof a vectore is given by
x(e) ={i] e #0}
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For an[n, k] codeC and anyr, wherel < r < k, therth
minimum support weighis defined by

d, = d,(C) = min {ws(D) | D an[n,r] subcode ofC'}.

In particular, the minimum distance @f is d;. The weight

hierarchyof C'is the set{d;, ds, - - -, ds }. These parameters of
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Combining i) and ii) in Corollary 1 one gets
Corollary 2: Let C' be a linear[n, k] code andd < r <
h < n. Then
enr(CF) = en—npgr—1(C)
My (CF) = M gegr—1(C).

a code were first studied by Helleseth, Klgve, and Mykkeltved'{Ombining iii) and iv) in Corollary 1 one gets

[5]. The rth minimum support weight is also known as ttth

generalized Hamming weight2]. The weight hierarchy, also
known as the length/dimension profile, has been studied in a
number of papers the last couple of years; for a bibliography,

see [4].
Let

C* ={ex |ee Candx(e) C X}.
and letk*X denote the dimension afX. Let

mp = mh(C’) = % Z kX.

h/ XeS;,

We note thatkX < kx. In particular, m;, < e¢,. The
inverse of the weight hierarchy is tligmension/length profile
ki, ko, -+, k, defined by

kn = kn(C) = max {k* | X € Sp}.

It was first studied by Kasangt al. [6] and Vardy and Be’ery
[11]. We also define

Chr = Chr(c) = |{X | X €8 kx = 7}|
and

Mpyr = mhr(c) = |{X | X e Sh,k'X = 7}|
n
h

<Z> mp = Z TMhr-

>0

for » > 0. Then

Ch = E TChr

>0

and

For X € &7, let
X =112, ,n}\X.

Simonis [10], using different notation, studied the functions
e andmy, and gave the following lemma and corollaries.

Lemma 1: Let C be an[n, k] code andX € &™. Then
) (CH)E = (CH)x.
i) dimCx + dim(CH)X = |X].
iy dimCyx +dimC* = k.
From Lemma 1 one gets a number of corollaries.
Corollary 1: Let C be a linearn, k] code and) < h < n.
Then

i) Chr(c) = mh,h—r(cd_)a for 0<7r<h.
i) en(C) = mnper(C), for 0<r<h
i) c(C) + mu(CL) = h.

iv) C}L(C) —i—mn_h(C) = k.

Corollary 3: Let C be a linear code and < h < n. Then

en(CH) =enn(O)+h—k
mp(CH) = mu_p,(C) + h — k.

For our further investigation, we may assume, without loss
of generality, that the: first positions in anfr, k] code are
information positions, i.e., the firgt columns in a generating
matrix are linearly independent. Henc€, has a generator
matrix of the form (I | P), where P is ank x (n — k)
matrix which we call theedundancy matrix

[ll. BOUNDS ON ¢y,

Theorem 1:Let C be an[n, k] code generated b{/;, | P)
and letp = rank P. If 1 < h < n, then

hk  hp(n —h)

> .
= n(n—1)

Proof: We may assume (permuting columns if necessary)
that

G = (Ix| 1| P2)

whereP; is ak x p matrix of rankp and P, is ak x (n—k—p)
matrix. We choose sets @f columns as follows:

First choose a sei; of i < A columns fromP;. Let
Y = Y(X;) be a set ofk — ¢ columns fromI; such that
X, UY is a basis for GF2)*. Choose a sek, of j columns
from P, and a sefX3 of [ columns fromY’, wherei+1+j < h.
Finally, choose a seX, of i, — ¢ — [ — j columns froml;, not
inY. The setX = X; UX,UX3U X, has rank at leagt+1.
Since all setsX chosen in this way are distinct, we get

(=2 ()2 (757
h = . -
h 7=0 ¢ 3=0 J
k—i . .
[
‘ Z L (i 41).
— < l h—i—95—1
We remind the reader about the Vandermonde convolution
b—a a b
m p—m p)’

Using this we get

b—a

2.

m=0

S0 (R0
20 X (6
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zp: < ) < p) Lemma 2: If there exists arin, k, d] code, then
b
p iUl ¢ p(n,k,d) > T(k,d).
=p)_ < )( n—1) - (? - 1)> Proof: Let P be a redundancy matrix for am, k, d]
—\i—1 -1)-@GE-1) code. Anyd— 1 rows of P must be linearly independent, since
n—1 otherwise a linear combination is zero, and the corresponding
= p<h _ 1) linear combination of rows i, | P) then gives a codeword

of weight less thanl. HenceP™ generates a code of length
Similarly and dual distance at leagt O
From known lower bounds off (N,d) due to Singleton,

zp: <p> "_E:k_p <n — k- p) A < ) < i )l Rao, and Levenshtein (see [9]) we obtain the following bounds
i [
=0

— — h—i—j— on p(n,k,d) for k > d > 2:
= 1=
_k. 7’L—1 B 7’L—2 1)p(71,]€,d)2d—1, :
“\a-1) TP a-2) 2 pnkd) 2 log (203 (7))
Combining these we get if d=21+1+ 92,_wherel is an integer
. . ) and 8 € {0,1};
oo PGI) FRGD) —pGY) _ bk hp(n—h) o 3) p(n.k,d) 2 k = log LO(d)
h= ) n " an-1) where
ey L& (d)
Remark 1: We see from the proof that i€ is an [n, k] * _
code generated by _ JLw'(d), if dp(k—1)<d—1<dp_1(k—2)
. oL* (), if du(k—2) <d—1<dp(k—1)
<I’“ Okfpyp Ok:"—’“—f’) whered,,, (k) is the smallest root of the

Krawtchouk polynomial
whereOy,_,, ,, is the(k —p) x p all-zero matrix andDy, ,—x—p

is thek x (n — k — p) all-zero matrix, then Kk (2) = zm:(_l)j <7> <k - z.)
= J/\Nm =7
_hk  hp(n —h) =0
e T - 1) of degreem, and
for 1 < h < n. In particular, for then, k] code generated by W) Lk E\KE L (d-1)
the matrix(Iy | Oy n—x) We gete, = hk/n for all & and this Ly(d) = Z <L> N <m> K (d)

is the smallest possible value ef for an [n, k] code. =0

Remark 2: If we chooseX3; =Y, the resultingX hasrank  Now we go on to investigate relations between ; and
k. Hence, we also get, by the same argument, ep. For X € &, andY € Sp41, WhereX C Y, let

p — — f’ _k k .

p n k p+L KXY Yy — KX
. > E .
Chk_i 0<'L>< h k )

Clearly, kxy € {0,1}. EachX € &, is contained in exactly
— h setsY € &p,41, and each” € &4 contains exactly

szpa>rt|gglar for the number of information setg;, we get h +1setsX € S, Hence
For an[n, k, d] code withd > 2, the rankp of a redundancy Chl = 1 Z L Z (kx + rxy)
matrix cannot be too small, and an interesting problem is to (Z) xes, VTV vESL
find the minimal rankp(n, k, d) of any redundancy matrix of . . xcy
any [n, k,d] code. It is clear that -
HPOEE Z .
p(n, k,d) <n—k. . Potiva
1
On the other hand, by Theorem 1 and Remark 2 above, any + m Z Z KXy
lower bound onp(n, k, d) gives rise to a lower bound og}, W Xes, ijch;l
and a lower bound on the number of information sets. 1 1
Let K(N,d) denote the maximal dimension of a binary =ep+ m Z nh Z KXY
linear code of lengthV and minimum distancé. Similarly, h/ X €Sy VS
let (N, d) denote the minimal dimension of a binary linear 1 1
code of lengthV and dual distancel. Clearly, if C'is an =cnt oy Z n_h
[N, k, d] code, therC+ is an[N, N — k] code of dual distance () Xes, "
d and vice versa. Hence HY |Y € Spy1, X CYohxy =1}

T(N,d)=N — K(N,d). Hence we get the following lemma.
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Lemma 3: Let C' be an[n, k] code. Then IV. SOME FURTHER PROPERTIES OFey,-
Some further properties ofy,,. are given in the next the-
Cht+1 = €p + m orems.
' Theorem 4:Let C be an[n, k] code andl < h < n. Then
XEE; (Y 1Y € Sur, X C Yonxy = 1} i) ene = 0f0r 0 < v < h— ky(CL),

i) ep, = 0 for r > min (h, k),
From Lemma 3 we get;, < e,_1 + 1, which can also be i) ¢, > 1 for h — k;,(C1) < 7 < min (h, k).

seen directly. A more important application of Lemma 3 isto  Proof:

give another good lower bound. i) Let X € {1,2,---,n}. Then

Theorem 2:Let C be an[n, k] code andl < h < n. Then

k=, h—kx = dim (Cx)t = dim (CH)X < ky(CH)
Ch+1 Zeh+ n—h"
which proves i). Moreover, there exists ahsuch that
Proof: Let X € &;. The columns ofGx generate a

vector spacd’ of dimensionky. Therefore, there are— kx dim (CH)* = k,(C1)
columns in the information positions which are not contained
in V. Any of the corresponding positions together with and so
gives asel” € &4 containingX and such thaty = kx+1.
Hence Ch,h—ky, (CL) > 1.

{Y |Y € Spy1, X CYonxy =1} 2 b — kx. i) For any X € &, the codeCy is an [h, kx| code. In

particularkx < h andkx < k, and soep, < min (h, k).

Combining this with Lemma 3 we get )
Moreover, there exists a” € §;, such thatky =

1 ) ; N

Chi1 > en + . Z (k — kx) min (h, k). This proves ii) and that

( - )( ) Xesy,
k Ch,min(h,k) > L
en + n |Sh| Z k'X .

(n— h)(h) Xesh iii) There exists a sequencg = X, Xo,---, Xy =Y of sets
k en in &y, such thal X; N X, 11| =h-1fori=1,2,---,t—1.
=cnt n—h n—h - Clearly, |kx, — kx,,,| < 1. Hence, for each such that
h — ki, (C+) < r < min(h, k), there exists an such that

The bounds in Theorem 2 are best possible in the sense thatk
there exists a code for whicty, 11 = ¢, + (k—ep)/(n = h)
for all A, namely, the code generated by the maftix | 0).

Theorem 3:Let C be an[n, k] code. Letl < » < k and

= r. This proves iii). O

For 0 <r < kand0 <i < nlet A denote the number
of subspaces of® of dimensionr and support weight. In

particular, 1, A}, A3, ---, Al is the usual weight distribution
< < n. n
0 < h < n Then of C (note thatA} = 0).

en <k—r+ ﬁd, We next give a lemma and a theorem which both are

essentially due to Simonis [10].
Proof: Let G be a generator matrix fo” with the Let

property that the first rows of G generate am-dimensional —1
subcodeD, of C of support weightd,.. Let X € &; and [r] = H(gr - 29)
Y = X nx(D,). The lastk — r rows of Gx have rank at =0

mostk — r. The firstr rows have ranky (D,) < |Y|. Hence
which is the number of ordered bases of mdimensional

kx <k—r+lY] space (over GR2)), and let

and we get . al
- - - a
min(h,d,.) |: :| H =277 (@a—r)y___ %]
n—dy 2r— 2 [r][a — 7]
Ch S 7ny Z Z < . )
5 h—1i
=0 vest which is the number ofr-dimensional subspaces of an
_  windh.dy) _ dimensional space.
kE—r1 d:-\ (n—d,
< B Z i ho— Lemma 4: Let C be an[n,k] code andl < » < h < n.
h =0 Then
min(h,d,)
1 . dr n — dr s .
cwox (D000 > [t ()
- s=0
=k—7r+ —d,

Lemma 4 gives a set of equations fgy. which can be solved.
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Theorem 5:Let C be an[n, k] code andl < r < h < n.
Then

e = 312 [P S (M),

7=0 1=0
In particular
h r
n _ ] io() |k —T+J
(S
r= 7j=0
3 Ak <” N L)
i=0 h

Corollary 4: Let C be an[n, k,d] code. Ifn —d < h <n,
thene;, = k. ‘

Proof: If i > d, then(";") = 0. If i <d andr —j <k,
then AY™™* = 0. Finally, if ¢ < d, r —j = k, and
Ak=m*9 5 0, thenj = 0, r = k, i = 0. Henceey, = k.

Alternatively, a direct proof goes as follows: L&t € Sj,.
Then|X|=h>n—dand sok — kx =0.

A similar argument gives the following corollary.

Corollary 5: Let C be an[n, k,d] code. Ifn —dy < h <

n — d, then
n—h .
n n—1t
e ()57
h Pt h
n—h .
Cnk—1 = z::d A <n b L)
enr =0, forr<k-—1.
In particular
n—h (n—z)
en=hk— Y A~ <k
i=d (h)
and

n—d
Ghzk_(2k_1)( h)

()
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This particular example was also studied by Laksov [8] and
Carlitz [1] in a different context. They derived an equivalent
expression forey,. (in a different notation).

V. RELATIONS WITH THE DUAL CODE

Let C' be an[n, k] code. As usual, we leBy, By,---, B,
denote the weight distribution of the dual co@e-. Further,
we letdi,dy,---,dL , denote the weight hierarchy &f-.
In particular,di is the dual distance.

Lemma 5: For all A we have

eho = By
h0 — h .

Proof: This follows immediately from the fact thaiB;
is the number of all-zero columns . O
In particular, we get

e0 = By
i1 =N — Bl.

For h = 2 we see thattx is 1 if the two corresponding
columns inG are{0,z} or {z,z}, wherez # 0. Hence

o ()
€21 = Bi(n—B1)+ <32 _ <B21>>

n
Coo = <2> - B2 - Bl(TL - Bl)

Lemma 6: For h < di- we havec;, = h.
Proof: This follows immediately from the fact that any
h < di columns inG are linearly independent, that is,
kx = |X|if | X]| < di. O
Example: For the[n,n — 1, 2] even-weight code Lemma 6
givese;, = h for h < n. Further,e,, = k =n — 1.
Lemma 7: Let C be an[n, k] code andif- < h < d3. Then

1 i n—i
— Bi< _.>(h—i+1).
0 2 P

Proof: Let X € S;. There is at most one codeword

e =h—

Combining Theorem 2 and Corollaries 4 and 5, we get tfié C*- with support inX since two such codewords would

following corollary.
Corollary 6: Let C be an[n, k,d] code. Then

O=cyp<er < <epog < Cpodtl

= Cnogp2 = = en = k.

Example: Let C be the[2* — 1, k] simplex code. Then

- |k
2k —gk=—r = |

A7 =0, otherwise

Hence we get

r

R R AN

=0

-Se 1)

generate a subspace@f- of dimensiorn2 and support weight
< |X| = h < dz. The support of a codeword ifi+ of weight

i < h is contained in(} ) setsX € S,. For these sets we
have

kx =i—1.

For the setsX which contain no codewords we must have
kx = |X|. Hence

S Rt

h izdf'
dF —1 .
n n—1t
()50
z:df‘
dF —1

1

6]

—h- ZBi<Z:§)(h—i+1). O

L
i1=dy
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VI. THE MINIMUM PROBLEM AS A PROGRAMMING PROBLEM  We obtainu(n, 2, d, k), the minimal value ok, as follows:
Supposerip > z11 + 2. Then we letz), = z10 — 1,
!

Let C be an[n, k] code and7 a generator matrix fo€'. For
1, 3760 = zg9o0 + 1. Then

— /I
eachu € GF(2)F, let z,, denote the number of timesappears 11 = %11 + 1,z = xo1 —
as a column ofZ. Further, letV, be the set of-dimensional

subspaces of G@2)*. Hellesethet al. [5] introduced a one-to- n ,
one correspondendé +— Dy between the spaces ¥, and h (en = )
the (£ — s)-dimensional subspaces 6f such that _ <x00 Yo+ 2) B <x00 +$11> B < 200 )
ws(Dy) =n — Za:,,-. h h h—1
vel _ {zoot+zn+1 Zoo + %11 Zoo
= + - > 0.
h—1 h—1 h—1

Using this fact, Theorem 5 can be reformulated as follows:
Let1 < A < n. Then
min(h k) » . Similarly, /|f Tor > az}o we can letx;, = zo; — 1, a_:go =
n e = Z 7,2(_1)]'2(-;) k—r+j zoo + 1, 1y = *10, 13 = 211, and the value o&;, will not
n)th T J increase. Hence for the minimum we havg = z10 = 211

=1 ;=0 .
! J or o1 = x10 = x11 + 1, that is

Z <v;b x")' 3) d = 2t (d is even):
UeVi; h
Let To1r =1, T10 =1, T11 =%, Tgo =n — 3.
p(n, k,d, h) = min {e,(C) | C is an[n, k,d] code}. d =2t -1 (d is odd):
Then

1 min(h,k) ” To1 = t, T10 = t, T11 = t— 1, oo =N — 3t+ 1.

p(n, k,d,h) = minm Z 7’2(—1)j2(5)
h 7 §=0

=1 This gives the following results.

k—roj 2 Ty Theorem 6:
{ j } > <”EL )iy 1t dis even, then

UevVi_; h
where the minimum is taken over glty),cr (2)+ such that (n—d) (n—3d/2)
pw(n,2,d,h) =2 —3~Dr 2 b
1, IS @ nonnegative integer () ()
Z Ty =1 i) If dis odd, then
veEGF (2)*
n—d n—d—1 n—(3d+1)/2
Z e <n—d (h) (h) (h)
ol

We have also considerdd= 3. Numerical results indicate
for all U € V;_,. Hence, the determination @f(n, k,d, k) is that the minimum is obtained for the following values of the

formulated as an integer programming problem. variables (ford > 2):
To determineu(n, k, d, h) in general seems to be a difficult d
problem. We will determing.(n, 2, d, ) as an illustration. Let 000 ¥100 - Foto  ¥110
C be an[n,2,d] code. From (3) we get 4t n— Tt ¢ ¢ ¢
n n Zoo + Zot Zoo + 10 4t—1 n—-Tt+1 t t
5 ehp =2 n) h - h 4-2 n-Tt+3 t-1 ¢ t
4-3 n—-Tt+4 t-1 t t
_ (Too t 211 n 00
h h )’
. . d
Without loss of generality, we may assume that oot flor Forl L
4t t t t t
To1 2 T10 2 T11. 4t —1 + + + ot
Then 4t — 2 t t t—1 t-—1
4t -3 t t t—1 t—2

Zoo + Tor =n —d = Too + T10 = Too + T11.
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This gives the following (conjectured) values
(Z)u(n,ﬁi,d, h):
dmod 4 wu(n,3,d,h)
0| B() =70 TR (e
-1 3(h) 4 " ¢ 3(" h +6(" (3(;—'—1)/2
+(n—(3d-|}—bl)/2 1) 3(n (7(;4-3)/4
2| 8() = 6(") = (") ()
+3(n 3(;/2 3 n— (7d+2)/4
+4(n—(3d+1)/2 +2 n— (3d+1§/2 1
+(n—(3d+l)/2 2) (n (731—1—0)/4)

In a few cases we can give lower boundsgm, k, d, h).
Theorem 7:For all n, k, andd we have

N(nv ka d7 1) >

555

for Lemma 9: Let P be a binaryk x ! matrix of ranks. Then the

number+y(k,m, s,t) of k x m matricesq) such that(P | Q)
has ranks + ¢ is exactly

yme&@:2W{T}F;3hq

Proof: First we observe that any” AP for an
invertible matrix A gives the same number. Hence we may

assume that
I,
P= <Ok—s,s )

and ¢ is of the form
X
Y

wherel, is thes x s identity matrix,Oy_; 5 is the(k —s) x s
all-zero matrix,X is an arbitrarys x m matrix, andY is a

Proof: The function we want to minimize can be rewrit-(k — s) x m matrix of rankt. Therefore, X can be chosen in

ten as
1
25 0.
" v#0
By the Plotkin bound
(28 -1
—Z%M———tl
v#0

and we have equality if and only, = %L_l forall v # 0. O
Theorem 8:

) If n—d < h < n, then
I’L(n7 k? d? h) = k'
i) If n—[3d/2] < h <n—d, then

Mmhdm)zk—@k—nii—

Proof: i) follows directly from Corollary 4. By the
Griesmer—Wei boundgd, > [3d/2] and so ii) follows from
Corollary 5. |

VILI.
In this section we consider the average valuecgf and

THE AVERAGE INFORMATION FUNCTION

ep, over allk x n generator matrices, or equivalently, over all

[n, k] codes. We start with some technical lemmas.
Lemma 8: The number of binary x A matrices of rank: is

aa

The lemma is well known and can, e.g., be proved as followR! [

We count the number of linear mappings @F — GF(2)"

of rank ». The number of kernels |{sk] and the number of g en)=
image spaces |{5h] Finally, an ordered basis of a space of Z}

dimensionr can be chosen ifr] ways.

2°™ ways, and, by Lemma & can be chosen ifi}’ ][ 11t
ways. |
Theorem 9: The average value @f,,. over all[n, k] codes is

21‘(n—h—k+1’) .

]
w\ || |k—=7r
E(ep) = LA
= (L
k

Proof: A binary & x n matrix of rankk can be chosen in
v(k,n,0,k) ways. For any of the}') choices ofh positions,
there arev(k, h,0,7)y(k,n — h,r,k — r) of those matrices

which have rank- in theseh positions and thereby contribute
to the average. Hence, the average is

<n> ~v(k,h,0,7)y(k,n — h,7 k—7)
h

’7(167 n? 07 k)
and so the theorem follows from Lemma 9. O
Theorem 10: The average value af,, over all[n, k] codes

is
. hiin=nh r(n—h—k+r)
]z

min (h,k)
E(Ch) = m r=max (0,h+k—n)

hlin—=nh 21‘(n—h—k+1’) _ n
r||lk—r k|

Hence we get the following corollaries.
Corollary 7: If A < k, then the average value @f, over

n,k] codes is
, h n—nh
r||lk—h+r

We have

min (h,k)

>

r=max (0,h+k—n)

min (h,n—k)
h——— :| 2(h—1‘)(n—k—1’)'

r=1
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Corollary 8: If h > k, then the average value ef, over Remark: Let w(k) be an integer valued function. Lét=

all [n,k] codes is k+w(k) andn > 2k + w(k). If w(k) — oo whenk — oo,
1 min (k,n—h) then' by (6)’
- h n—nh c—r)(n—h—r —w(k
s k_m Z ' Lﬂ - r} [ T }2“ o k= E(eppop) < 2790,
r=1
k We next consider the variance. First we need another lemma.

Lemma 11:Let P be a binaryk x [ matrix of ranks and

Examples: If £ < n — 1 then :
@ ak x m matrix such that P | Q) has ranks + ¢t. Then the

Elen_) =k — 28 -1 (5) NuUMbers(k, p, s,t,u, v) of kx p matricesR such tha( P | R)
" 27 —1 has ranks + « and (P|Q|R) has ranks + ¢ 4 v is exactly
If £ < n—2then —
ok 1 (2k_1y(2kL 1) 8(k,p, s, t,u,v) = 25~ "){ }{ }H — 2=
E(Cn_g) =k-3 - + - po . =1
2n =1 (2r-1@*t-1) stitu—1
Lemma 10:For 0 < b < a we have x ] @ -29).

j=s+t

Proof: As in the proof of Lemma 9, we may assume
without loss of generality that

e e] 1 Is Os,t X
c=1] <1 - 7) ~ 0.2887. P=1 O Q= Iy R=|Y
=1 2 Ok—s—t,s Ok—s—t,t Z

Proof: The lower bound follows from the fact that where X is an arbitrarys x p matrix, Z isa(k—s—1¢) x p
ga—i _{ ga=i matrix of rankv, andY is at x p matrix such that},) has

where

prrsm— > =i = 2078, rank . The matrixX can be chosen i@°? ways. By Lemma
- 8, Z can be chosen if*~*~*][?][v] ways. For a giverz,
The upper bound follows from by Lemma 9,Y can be chosen in
b—1 ) b—1 ) . t p—v
[[ -1 < J[2v =2wt-vi2 v(p,t,v,u—w) = 2" {u _ U} [u _ el
=0 =0
and ways. Combining and simplifying, the lemma follows. [
Lemma 12:For all . we have
b—1
. h h s—umin(r,s) h n n a\ (n—h
(2b Z_ 2b(b+l)/2 2b(b+l)/2 I:‘ h a) (h a)
Il - B =235 3 3l
r=0s=0v=0 wu=0 a=0 h
From Lemma 10 we get . Qu(2h—2a—rtu—v)+(r+v) (n—2h-ta—k+r-+v)
[ h Hn—h} {a}{h—a}[s—u}[h—a}[n—ﬂl—i—a}
cor(k—h—r) o k—r T o) n—h—r) u]lr—u v s—u||lk—r—vw
) :
k k
< c—2 21’(k—h—1‘) S
or—u _ 21—1 .
and so, forh > k we have ll;ll ( )
min (k,n—h) Proof: There are

¢ Z r2rk=h=T) <k Eey,)

ot n\n—a\(n-—n~h
min (k,n—h) a h—a h—a

-2 or(k—h—r
<c Z r2t . ®)  choices of h-subsets ofX,Y < {1,2,---,n} such that

=l |X NY| = a. The number oft x n matrices such that the
Similarly, for » < k& we have submatrices corresponding to the columns with positions in
min (o n—k) XnY,X,Y, XUY have ranks, r, s, andr+uv, respectively, is
c p2r(h=k=) < h — Eey, s—u
rzz:l (e2) Z’y(k,a,O,u)fy(k,h—a,u,r—u)
min (h,n—k) v=0
<2 Z por(h—k—r) <6(k, h — a,u,r —u, s — u,v)

r=1 ~y(k,n—2h+a,r + v,k —r—v).



HELLESETH et al. ON THE INFORMATION FUNCTION OF AN ERROR-CORRECTING CODE 557

Hence _ on—1(2F - 121 - 1)
- (k - 1) n n—1
E(ed) n (20 =1)(2r1 1)
2 n—1_,2-1Er-1
h h s—umin(r,s) h + (3/€ _ 2/€) ok— - —
= 2222 Z 273 n (27 —1)(2 -1
v(k,0,7,0, If)(h 7=05=0v=0 u=0 a=0 - 1)2l (28 —1) N k2l2k(2"—k -1)
'<n><n—a><n—h> n (27 —1) n (20 -1)
a/\h—a/\h—a +k2n_ 122k (2n—k _ 1)(2n—k—1 —1)
— n (2r —1)(2n-1 —1)
. Z v(k,a,0,u)v(k, h — a,u,r — u)
=0 Simplifying and combining with (5) we get
~6(k, b —a,u,r —u, s — u,v) (2F — 1)(2n—1 — 2k=1)(2n — p — 1)
Ak = 2h+ar v,k =7 =) Vo) = T e )
h h s—umin(r,s) h n) (n a) (n h)
= ZZ Z Z Z” h—a) \h—a Taking ¢ = 2,1—1 in Tchebychev’s inequality we get
r=0s5=0v=0 u=0 a=0 (h) k n— k— n
. gulh—a—r+u)tu(h—a—v)+r(h—a—s+u)+(r+v)(n—2h+a—k+r+v) P<6n_1 < k—22 _1> < (2 ' _k2 1)(2_1—71—1)
allh—al|ls—u||lh—al||n—2h+a 21 n(2F-1)(2"7 1)
ull|lr—u v s—ul||k—r—vw In particular, ifn — oo andn — k = o(logn), then
n k
{k} P<en 1< k- 2; _1>—>0.
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SinceVar (e;,) = E(e}) — E(ey)?, we can combine Theo-
rem 10 and Lemma 12 to obtalar (e). In general, it is a
quite complicated expression.

As an example, we comput®¥ar (e,_1). We note that
we get a contribution to the sum only f = n — 2 or
a=n-—1. Fora=mn—1 we only get a contribution when
U=r—s¢ {k — ]_7]§} andv = 0. Fora = n — 2 we get [1] L. Carlitz, “Note on a paper of Laksov,Math. Scand.vol. 19, pp.

TR 38-40, 1966.
contributions Only fork —2 < u < k. We get [2] G. C. Clark and J. B. CainError-Correcting Coding for Digital
E(62 ) Communication New York: Plenum, 1981.
n—-l [3] G.D. Forney, “Dimension/length profiles and trellis complexity of linear

n— 2} block codes,'|EEE Trans. Inform. Theorwol. 40, pp. 1741-1752, 1994.
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