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On the Information Function of an
Error-Correcting Code
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Abstract—The information function eh of a code is the average
amount of information contained in h positions of the codewords.
Upper and lower bounds on the information function of binary
linear codes are given. The average value and variance of the
information function over all [n; k] codes are determined.

Index Terms— Information function, linear code, support
weight, weight hierarchy.

I. INTRODUCTION

W E introduce and study the information function of a
code. It is defined as the average amount of information

contained in positions of the codewords. We see possible
applications of the function in the study of decoding as well
as in cryptographic applications of error-correcting codes.

A possible cryptographic application is the following. A
code to be used for transmission of data is chosen at
random from the set of all codes of length(or some suitable
subset, e.g., the set of all permutations of some fixed code).
Suppose an intruder is able to observeof the positions
of a codeword. The expected amount of information he will
obtain is . If we, as code designers, want him to get as little
information as possible, we must choose codes with as small

as possible.
For information set decoding (see e.g., [2, pp. 102–131])

we want to have codes with many information sets, that is,
codes with many sets of positions containing all the

information in a codeword. Therefore, to some extent, we have
a design criterion which is the opposite of the criterion for the
cryptographic application.

In this paper we consider upper and lower bounds on the
information on binary linear codes.

II. NOTATIONS AND BACKGROUND INFORMATION

Let denote the subsets of , and
the subsets of of size . For a vector

and a set , where
, we let

For a binary code of length and a set , we define
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the code

For , let

It is clear that

for any .
If all codewords are equally probable and the intruder

observes a vector in the positions in , then he obtains

bits of information. The expected (average) information in
positions is therefore

(1)

We call the information functionof the code and
the information profile.

We note that by (1) and the convexity of the logarithm we
get

(2)

with equality if and only if all are equal for .
In the case of a linear code , for any the code
is a linear code of some dimension , and
for all . Hence

In this paper we study the information function of linear codes.
Let be a generator matrix for . Since permuting the

positions of does not change the information profile, we
may assume that has the form , where is the

identity matrix. For , denotes the
matrix containing the columns of in the positions of . By
definition, has rank and its rows generate .

The supportof a vector is given by

For any code , , thesupport of , is the set of positions
where not all the codewords of are zero, that is,

The support weightof is .
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For an code and any , where , the th
minimum support weightis defined by

an subcode of

In particular, the minimum distance of is . The weight
hierarchyof is the set . These parameters of
a code were first studied by Helleseth, Kløve, and Mykkeltveit
[5]. The th minimum support weight is also known as theth
generalized Hamming weight[12]. The weight hierarchy, also
known as the length/dimension profile, has been studied in a
number of papers the last couple of years; for a bibliography,
see [4].

Let

and

and let denote the dimension of . Let

We note that . In particular, . The
inverse of the weight hierarchy is thedimension/length profile

defined by

It was first studied by Kasamiet al. [6] and Vardy and Be’ery
[11]. We also define

and

for . Then

and

For , let

Simonis [10], using different notation, studied the functions
and and gave the following lemma and corollaries.

Lemma 1: Let be an code and . Then
i) .
ii) .
iii) .
From Lemma 1 one gets a number of corollaries.

Corollary 1: Let be a linear code and .
Then
i) for
ii) for
iii) .
iv) .

Combining i) and ii) in Corollary 1 one gets
Corollary 2: Let be a linear code and

. Then

Combining iii) and iv) in Corollary 1 one gets
Corollary 3: Let be a linear code and . Then

For our further investigation, we may assume, without loss
of generality, that the first positions in an code are
information positions, i.e., the first columns in a generating
matrix are linearly independent. Hence, has a generator
matrix of the form , where is an
matrix which we call theredundancy matrix.

III. B OUNDS ON

Theorem 1: Let be an code generated by
and let . If , then

Proof: We may assume (permuting columns if necessary)
that

where is a matrix of rank and is a
matrix. We choose sets of columns as follows:

First choose a set of columns from . Let
be a set of columns from such that

is a basis for GF . Choose a set of columns
from and a set of columns from , where .
Finally, choose a set of columns from not
in . The set has rank at least .
Since all sets chosen in this way are distinct, we get

We remind the reader about the Vandermonde convolution

Using this we get
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Similarly

Combining these we get

Remark 1: We see from the proof that if is an
code generated by

where is the all-zero matrix and
is the all-zero matrix, then

for . In particular, for the code generated by
the matrix we get for all and this
is the smallest possible value of for an code.

Remark 2: If we choose , the resulting has rank
. Hence, we also get, by the same argument,

In particular, for the number of information sets we get
.

For an code with , the rank of a redundancy
matrix cannot be too small, and an interesting problem is to
find the minimal rank of any redundancy matrix of
any code. It is clear that

On the other hand, by Theorem 1 and Remark 2 above, any
lower bound on gives rise to a lower bound on
and a lower bound on the number of information sets.

Let denote the maximal dimension of a binary
linear code of length and minimum distance. Similarly,
let denote the minimal dimension of a binary linear
code of length and dual distance . Clearly, if is an

code, then is an code of dual distance
and vice versa. Hence

Lemma 2: If there exists an code, then

Proof: Let be a redundancy matrix for an
code. Any rows of must be linearly independent, since
otherwise a linear combination is zero, and the corresponding
linear combination of rows in then gives a codeword
of weight less than . Hence generates a code of length
and dual distance at least.

From known lower bounds on due to Singleton,
Rao, and Levenshtein (see [9]) we obtain the following bounds
on for :

1) ;

2)

if , where is an integer
and ;

3)
where

if
if

where is the smallest root of the
Krawtchouk polynomial

of degree , and

Now we go on to investigate relations between and
. For and , where , let

Clearly, . Each is contained in exactly
sets , and each contains exactly
sets . Hence

Hence we get the following lemma.



552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

Lemma 3: Let be an code. Then

From Lemma 3 we get , which can also be
seen directly. A more important application of Lemma 3 is to
give another good lower bound.

Theorem 2: Let be an code and . Then

Proof: Let . The columns of generate a
vector space of dimension . Therefore, there are
columns in the information positions which are not contained
in . Any of the corresponding positions together with
gives a set containing and such that .
Hence

Combining this with Lemma 3 we get

The bounds in Theorem 2 are best possible in the sense that
there exists a code for which
for all , namely, the code generated by the matrix .

Theorem 3: Let be an code. Let and
. Then

Proof: Let be a generator matrix for with the
property that the first rows of generate an-dimensional
subcode of of support weight . Let and

. The last rows of have rank at
most . The first rows have rank . Hence

and we get

IV. SOME FURTHER PROPERTIES OF

Some further properties of are given in the next the-
orems.

Theorem 4: Let be an code and . Then
i) for ,
ii) for ,
iii) for .

Proof:

i) Let . Then

which proves i). Moreover, there exists ansuch that

and so

ii) For any , the code is an code. In
particular and , and so .
Moreover, there exists an such that

. This proves ii) and that

iii) There exists a sequence of sets
in such that for .
Clearly, . Hence, for each such that

, there exists an such that
. This proves iii).

For and let denote the number
of subspaces of of dimension and support weight. In
particular, is the usual weight distribution
of (note that ).

We next give a lemma and a theorem which both are
essentially due to Simonis [10].

Let

which is the number of ordered bases of an-dimensional
space (over GF ), and let

which is the number of -dimensional subspaces of an-
dimensional space.

Lemma 4: Let be an code and .
Then

Lemma 4 gives a set of equations for which can be solved.
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Theorem 5: Let be an code and .
Then

In particular

Corollary 4: Let be an code. If ,
then .

Proof: If , then . If and ,
then . Finally, if , , and

, then , , . Hence .
Alternatively, a direct proof goes as follows: Let .

Then and so .
A similar argument gives the following corollary.
Corollary 5: Let be an code. If

, then

for

In particular

and

Combining Theorem 2 and Corollaries 4 and 5, we get the
following corollary.

Corollary 6: Let be an code. Then

Example: Let be the simplex code. Then

otherwise

Hence we get

This particular example was also studied by Laksov [8] and
Carlitz [1] in a different context. They derived an equivalent
expression for (in a different notation).

V. RELATIONS WITH THE DUAL CODE

Let be an code. As usual, we let
denote the weight distribution of the dual code . Further,
we let denote the weight hierarchy of .
In particular, is the dual distance.

Lemma 5: For all we have

Proof: This follows immediately from the fact that
is the number of all-zero columns in.

In particular, we get

For we see that is if the two corresponding
columns in are or , where . Hence

Lemma 6: For we have .
Proof: This follows immediately from the fact that any

columns in are linearly independent, that is,
if .

Example: For the even-weight code Lemma 6
gives for . Further, .

Lemma 7: Let be an code and . Then

Proof: Let . There is at most one codeword
in with support in since two such codewords would
generate a subspace of of dimension and support weight

. The support of a codeword in of weight
is contained in sets . For these sets we

have

For the sets which contain no codewords we must have
. Hence
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VI. THE MINIMUM PROBLEM AS A PROGRAMMING PROBLEM

Let be an code and a generator matrix for . For
each GF , let denote the number of timesappears
as a column of . Further, let be the set of -dimensional
subspaces of GF . Hellesethet al. [5] introduced a one-to-
one correspondence between the spaces in and
the -dimensional subspaces of such that

Using this fact, Theorem 5 can be reformulated as follows:
Let . Then

(3)

Let

is an code

Then

(4)

where the minimum is taken over all such that

is a nonnegative integer

and

for all . Hence, the determination of is
formulated as an integer programming problem.

To determine in general seems to be a difficult
problem. We will determine as an illustration. Let

be an code. From (3) we get

Without loss of generality, we may assume that

Then

We obtain , the minimal value of , as follows:
Suppose . Then we let ,

, , . Then

Similarly, if we can let ,
, , , and the value of will not

increase. Hence for the minimum we have
or , that is

( is even):

( is odd):

This gives the following results.
Theorem 6:

i) If is even, then

ii) If is odd, then

We have also considered . Numerical results indicate
that the minimum is obtained for the following values of the
variables (for ):
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This gives the following (conjectured) values for
:

In a few cases we can give lower bounds on .
Theorem 7: For all , , and we have

Proof: The function we want to minimize can be rewrit-
ten as

By the Plotkin bound

and we have equality if and only for all .
Theorem 8:

i) If , then

ii) If , then

Proof: i) follows directly from Corollary 4. By the
Griesmer–Wei bound, and so ii) follows from
Corollary 5.

VII. T HE AVERAGE INFORMATION FUNCTION

In this section we consider the average value of and
over all generator matrices, or equivalently, over all

codes. We start with some technical lemmas.
Lemma 8: The number of binary matrices of rank is

The lemma is well known and can, e.g., be proved as follows:
We count the number of linear mappings GF GF
of rank . The number of kernels is and the number of
image spaces is . Finally, an ordered basis of a space of
dimension can be chosen in ways.

Lemma 9: Let be a binary matrix of rank . Then the
number of matrices such that
has rank is exactly

Proof: First we observe that any for an
invertible matrix gives the same number. Hence we may
assume that

and is of the form

where is the identity matrix, is the
all-zero matrix, is an arbitrary matrix, and is a

matrix of rank . Therefore, can be chosen in
ways, and, by Lemma 8, can be chosen in

ways.
Theorem 9: The average value of over all codes is

Proof: A binary matrix of rank can be chosen in
ways. For any of the choices of positions,

there are of those matrices
which have rank in these positions and thereby contribute
to the average. Hence, the average is

and so the theorem follows from Lemma 9.
Theorem 10:The average value of over all codes

is

We have

Hence we get the following corollaries.
Corollary 7: If , then the average value of over

all codes is
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Corollary 8: If , then the average value of over
all codes is

Examples: If then

(5)

If then

Lemma 10: For we have

where

Proof: The lower bound follows from the fact that

The upper bound follows from

and

From Lemma 10 we get

and so, for we have

(6)

Similarly, for we have

Remark: Let be an integer valued function. Let
and . If when ,

then, by (6),

We next consider the variance. First we need another lemma.
Lemma 11: Let be a binary matrix of rank and
a matrix such that has rank . Then the

number of matrices such that
has rank and has rank is exactly

Proof: As in the proof of Lemma 9, we may assume
without loss of generality that

where is an arbitrary matrix, is a
matrix of rank , and is a matrix such that has
rank . The matrix can be chosen in ways. By Lemma
8, can be chosen in ways. For a given ,
by Lemma 9, can be chosen in

ways. Combining and simplifying, the lemma follows.
Lemma 12: For all we have

Proof: There are

choices of -subsets of such that
. The number of matrices such that the

submatrices corresponding to the columns with positions in
, , , have rank , , , and , respectively, is
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Hence

Since , we can combine Theo-
rem 10 and Lemma 12 to obtain . In general, it is a
quite complicated expression.

As an example, we compute . We note that
we get a contribution to the sum only if or

. For we only get a contribution when
and . For we get

contributions only for . We get

Simplifying and combining with (5) we get

Taking in Tchebychev’s inequality we get

In particular, if and , then
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