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Abstract. We first study the capacity of Nakagami multipath fading (NMF) channels with an average power
constraint for three power and rate adaptation policies. We obtain closed-form solutions for NMF channel capacity
for each power and rate adaptation strategy. Results show that rate adaptation is the key to increasing link spectral
efficiency. We then analyze the performance of practical constant-power variable-rateM-QAM schemes over
NMF channels. We obtain closed-form expressions for the outage probability, spectral efficiency and average bit-
error-rate (BER) assuming perfect channel estimation and negligible time delay between channel estimation and
signal set adaptation. We also analyze the impact of time delay on the BER of adaptiveM-QAM.
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1. Introduction

The radio spectrum available for wireless services is extremely scarce, while demand for these
services is growing at a rapid pace [1]. Hence spectral efficiency is of primary concern in the
design of future wireless data communications systems. In this paper we first investigate the
theoretical spectral efficiency limits of adaptive transmission in Nakagami multipath fading
(NMF) channels [2]. We then propose and study adaptive multi-level quadrature amplitude
modulation (M-QAM) schemes which improve link spectral efficiency (R/W [bits/sec/Hz]),
defined as the average transmitted data rate per unit bandwidth for a specified average transmit
power and bit-error-rate (BER). We also evaluate the performance of these schemes relative
to the theoretical spectral efficiency limit.

Mobile radio links can exhibit severe multipath fading which leads to serious degradation
in the link carrier-to-noise ratio (CNR) and consequently a higher BER. Fading compensation
such as an increased link budget margin or interleaving with channel coding are typically
required to improve link performance. However, these techniques are designed relative to the
worst-case channel conditions, resulting in poor utilization of the full channel capacity a good
percentage of the time (i.e., under negligible or shallow fading conditions). Adapting certain
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parameters of the transmitted signal to the channel fading leads to better utilization of the
channel capacity. The basic concept of adaptive transmission is real-time balancing of the
link budget through adaptive variation of the transmitted power level, symbol transmission
rate, constellation size, coding rate/scheme, or any combination of these parameters [3–7].
Thus, without wasting power or sacrificing BER, these schemes provide a higher average
link spectral efficiency by taking advantage of the time-varying nature of wireless channels:
transmitting at high speeds under favorable channel conditions and responding to channel
degradation through a smooth reduction of their data throughput. Good performance of these
schemes requires accurate channel estimation at the receiver and a reliable feedback path
between that estimator and the transmitter. Furthermore since outage probability of such
schemes can be quite high, especially for channels with low average CNR, adaptive systems
may require buffering of the input data.

The Shannon capacity of a channel defines its maximum possible rate of data transmis-
sion for an arbitrarily small BER, without any delay or complexity constraints. Therefore
the Shannon capacity represents an upper bound for practical communication schemes, and
also serves as a bench-mark against which to compare the spectral efficiency of adaptive
transmission schemes [8]. In [9] the capacity of a single-user flat-fading channel with per-
fect channel measurement information at the transmitter and receiver was derived for various
adaptive transmission policies. In this paper we apply the general theory developed in [9] to
obtain closed-form expressions for the capacity of NMF channels under different adaptive
transmission schemes. In particular, we consider three adaptive policies: optimal simultan-
eous power and rate adaptation, constant power with optimal rate adaptation, and channel
inversion with fixed rate. We then present numerical results showing that rate adaptation is
the key to achieving high link spectral efficiency. Rate adaptation can be achieved through
a variation of the symbol time duration [3] or constellation size [5]. The former method
requires complicated hardware and results in a variable-bandwidth system without additional
spectral efficiency, whereas the latter technique is better suited for hardware implementation,
and results in a spectrally efficient variable-throughput system with a fixed bandwidth. Based
on these advantages we analyze the performance of constant-power variable-rateM-QAM
schemes for spectrally efficient data transmission over NMF channels. Similar analysis has
been presented in [6] for a variable-power variable-rateM-QAM in Rayleigh fading and log-
normal shadowing, and in [10] for constant-power variable-rateM-QAM in Rayleigh fading.
We extend the results of [6, 10] to constant-power variable-rateM-QAM by analyzing the
resulting spectral efficiency and BER for the more general NMF distribution. We also analyze
the impact of time delay on the performance of adaptiveM-QAM.

The remainder of this paper is organized as follows. In Section 2 we outline the channel
and communication system models. In Section 3 we derive the capacity of NMF channels
for the optimal adaptive policy, constant power policy, and channel inversion policy, and we
present some numerical examples comparing (i) the NMF channel capacity with the capacity
of an additive white Gaussian noise (AWGN) channel, and (ii) the NMF channel capacity
for the various adaptive policies. In Section 4 we propose and evaluate the performance of
a practical adaptive constant-power variable-rateM-QAM system assuming perfect channel
estimation and negligible time delay between channel estimation and signal set adaptation.
The BER degradation due to time delay is analyzed in Section 5. A summary of our results is
presented in Section 6.



Adaptive Modulation over Nakagami Fading Channels121

Figure 1. Adaptive communication system model.

2. System and Channel Models

2.1. ADAPTIVE COMMUNICATION SYSTEM MODEL

A block diagram of the adaptive communication system is shown in Figure 1. A pilot tone
continually sends a known “channel sounding” sequence so that the channel-induced envelope
fluctuationα and phase shiftφ can be extracted at the channel estimation stage. Based on
this channel gain estimatêα, a decision device selects the rate and power to be transmitted,
configures the demodulator accordingly, and informs the transmitter about that decision via the
feedback path. The constellation size assignment for the proposed constant-power variable-
rateM-QAM scheme will be discussed in more detail in Section 4.1. The transmission system
keeps its configuration unchanged (i.e., no re-adaptation) for a durationτt [s]. Meanwhile, the
phase estimatêφ is used at the receiver for full compensation of the phase variation (i.e.,
ideal coherent phase detection), whereas the channel gain estimateα̂ is used on a continuous
basis by the automatic gain controller (AGC)/demodulator for symbol-by-symbol maximum-
likelihood detection.

For satisfactory operation the modulator and demodulator must be configurated at any
instant for the same constellation size. Efficient error control schemes are therefore required to
insure an error-free feedback path. However, such schemes inevitably introduce a certain time
delayτf b [s], which may include decoding/ARQ delay, and propagation time via the feedback
path. Hence, even if perfect channel estimates are available at the receiver, the system will
not be able to adapt to the actual channel fading but rather to at best aτf b delayed version
of it. In practice, the choice of the power and/or constellation is based on a channel estimate
at timet , but the data are sent over the channel at timet + τ such thatτf b ≤ τ ≤ τt , where
1/τt is the rate at which we change the constellation size and power. The goal is to operate
with the smallest possibleτf b to minimize the impact of feedback delay, and with the largest
possibleτt to minimize the rate of system reconfiguration. This issue will be further discussed
in Section 5.

2.2. CHANNEL MODEL AND FADING STATISTICS

We consider a slowly-varying flat-fading channel changing at a rate much slower than the
symbol data rate, so the channel remains roughly constant over hundreds of symbols. The
multipath fading environment can be characterized by different statistical models. For NMF
channels the probability distribution function (PDF) of the channel gainα is given by [2, (11)]

pα(α) = 2
(m
�

)m α2m−1

0(m)
exp

(
−mα

2

�

)
, α ≥ 0, (1)
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where� = E(α2) is the average fading power,m is the Nakagami fading parameter (m ≥
1/2), and0(.) is the gamma function [11]. The received CNR,γ , is then gamma distributed
according to the PDF,pγ (γ ), given by

pγ (γ ) =
(
m

γ

)m
γ m−1

0(m)
exp

(
−m γ

γ

)
, γ ≥ 0, (2)

whereγ is the average received CNR. The phaseφ of the Nakagami fading is uniformly
distributed over [0,2π ].

The Nakagami fading represents a wide range of multipath channels via them fading
parameter[2]. For instance, the Nakagami-m distribution includes the one-sided Gaussian
distribution (m = 1/2, which corresponds to the highest amount of multipath fading scenario)
and the Rayleigh distribution (m = 1) as special cases. In addition, whenm > 1, a one-to-one
mapping between the Rician factor and the Nakagami fading parameter allows the Nakagami-
m distribution to closely approximate the Rice distribution [2]. Finally, and perhaps most
importantly, the Nakagami-m distribution often gives the best fit to urban [12] and indoor [13]
multipath propagation.

3. Capacity of Nakagami Fading Channels

In this section we present closed-form expressions for the capacity of NMF channels under
various power and rate adaptation policies and assuming perfect channel estimation (i.e.,γ̂ =
γ ) and negligible time delay between channel estimation and signal set adaptation (τ = 0).

3.1. OPTIMAL ADAPTATION

Given an average transmit power constraint, the channel capacity of a fading channel with
received CNR distributionpγ (γ ) and optimal power and rate adaptation (<C>opra [bit/sec])
is given in [9] as

<C>opra= W
∫ +∞
γo

log2

(
γ

γo

)
pγ (γ ) dγ, (3)

whereW [Hz] is the channel bandwidth andγo is the optimal cutoff CNR level below which
data transmission is suspended. This optimal cutoff must satisfy the equation∫ +∞

γo

(
1

γo
− 1

γ

)
pγ (γ ) dγ = 1. (4)

To achieve the capacity (3), the channel fade level must be tracked at both the receiver and
transmitter, and the transmitter has to adapt its power and rate accordingly, allocating high
power levels and rates for good channel conditions (γ large), and lower power levels and rates
for unfavorable channel conditions (γ small). Since no data is sent whenγ < γo, the optimal
policy suffers a probability of outagePout, equal to the probability of no transmission, given
by

Pout =
∫ γo

0
pγ (γ ) dγ = 1−

∫ +∞
γo

pγ (γ ) dγ . (5)
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Substituting (2) in (4) we find thatγo must satisfy

0
(
m,m

γo
γ

)
γo
γ

−m 0
(
m− 1,m

γo

γ

)
= γ 0(m), (6)

where0(., .) is the complementary incomplete gamma function [11]. For the special case of
the Rayleigh fading channel (m = 1), (6) reduces to

e−γo/γ

γo/γ
− E1

(
γo

γ

)
= γ , (7)

whereE1(·) is the exponential integral of first order defined by

E1(x) =
∫ ∞

1

e−xt

t
dt; x ≥ 0.

Let x = γo/γ̄ and define

f (x) = 0(m,m x)

x
−m 0(m− 1,m x)− γ 0(m). (8)

Note thatdf (x)
dx
= −0(m,mx)

x2 < 0 for all x ≥ 0. Moreover, from (8), limx→0+ f (x) = +∞ and
limx→+∞ f (x) = −γ 0(m) < 0. Thus there is a unique positivexo for which f (xo) = 0 or,
equivalently, there is a uniqueγo which satisfies (6). An asymptotic expansion of (6) shows
that asγ →+∞, γo→ 1. Our numerical results show thatγo increases asγ increases, which
implies thatγo always lies in the interval [0,1].

Substituting (2) in (3), and defining the integralJn(µ) as

Jn(µ) =
∫ +∞

1
tn−1 ln(t) e−µ t dt; µ > 0, (9)

we can rewrite the channel capacity<C>opra as

<C>opra= W log2(e)

0(m)

(
m γo

γ

)m
Jm

(
m γo

γ

)
. (10)

The evaluation ofJn(µ) for n a positive integer is derived in [14, Appendix A]. Using that
result we obtain the NMF channel capacity per unit bandwidth< C >opra /W [bits/sec/Hz]
under the optimal power and rate adaptation policy as

<C>opra

W
= log2(e)

m−1∑
k=0

0
(
k,m

γo
γ

)
k! , (11)

which can also be written as

<C>opra

W
= log2(e)

(
E1(mγo/γ )+

m−1∑
k=1

Pk(mγo/γ )

k

)
, (12)

wherePk(.) denotes the Poisson distribution defined by,

Pk(µ) = e−µ
k−1∑
j=0

µj

j ! . (13)
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For the special case of the Rayleigh fading channel, using (7) in (12) form=1, the optimal
capacity per unit bandwidth reduces to the simple expression

<C>opra

W
= log2(e)

(
e−γo/γ

γo/γ
− γ

)
. (14)

Using (2) in the probability of outage equation (5) yields

Pout = 1− 0(m,mγo/γ )
0(m)

= 1−Pm(m γo/γ ). (15)

3.2. CONSTANT TRANSMIT POWER

With optimal rate adaptation to channel fading and with a constant transmit power, the channel
capacity<C>ora [bits/sec] becomes [9]

<C>ora= W
∫ +∞

0
log2(1+ γ ) pγ (γ ) dγ . (16)

< C >ora was previously introduced by Lee [15, 16] as the average channel capacity of a
flat-fading channel, since it is obtained by averaging the capacity of an AWGN channel

Cawgn= W log2(1+ γ ) (17)

over the distribution of the received CNR. In fact, (16) represents the capacity of the fading
channel without transmitter feedback (i.e. with the channel fade level known at the receiver
only) [17–19].

Substituting (2) into (16) and defining the integralIn(µ) as

In(µ) =
∫ +∞

0
tn−1 ln(1+ t) e−µ t dt; µ > 0, (18)

the channel capacity<C>ora of a NMF channel can be written as

<C>ora= W log2(e)

0(m)

(
m

γ

)m
Im

(
m

γ

)
. (19)

The evaluation ofIn(µ) for n a positive integer is derived in [14, Appendix B]. Using that
result, we can rewrite<C>ora /W [bits/sec/Hz] as

<C>ora

W
= log2(e) e

m/γ

m−1∑
k=0

(
m

γ

)k
0

(
−k, m

γ

)
. (20)

One may also express (18) in terms of the Poisson distribution as [16, Appendix] resulting in

<C>ora

W
= log2(e)

(
Pm(−m/γ ) E1(m/γ )+

m−1∑
k=1

Pk(m/γ ) Pm−k(−m/γ )
k

)
. (21)

Note that Yao and Sheikh [20] as well as Buz [21] provided alternate closed-form expressions
for the capacity of NMF channels. However their derivations are different than ours and their
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resulting expressions [20, (7)] and [21, (1)] containm − 1 order derivatives. For the special
case of the Rayleigh fading channel (m = 1), (20) reduces to

<C>ora

W
= log2(e) e

1/γ E1(1/γ ). (22)

3.3. CHANNEL INVERSION WITH FIXED RATE

The channel capacity when the transmitter adapts its power to maintain a constant CNR at
the receiver (i.e., inverts the channel fading) was also investigated in [9]. This technique
uses fixed-rate modulation and a fixed code design, since the channel after channel inversion
appears as a time-invariant AWGN channel. As a result, channel inversion with fixed rate is
the least complex technique to implement, assuming good channel estimates are available at
the transmitter and receiver. The channel capacity with this technique (<C>cifr [bits/sec]) is
derived from the capacity of an AWGN channel and is given in [9] as

<C>cifr= W log2

(
1+ 1∫ +∞

0 pγ (γ )/γ dγ

)
. (23)

Channel inversion with fixed rate suffers a large capacity penalty relative to the other tech-
niques, since a large amount of the transmitted power is required to compensate for the
deep channel fades. Another approach is to use a modified inversion policy which inverts
the channel fading only above a fixed cutoff fade depthγo. The capacity with this truncated
channel inversion and fixed rate policy (<C>tifr [bits/sec]) was derived in [9] to be

<C>tifr= W log2

(
1+ 1∫ +∞

γo
pγ (γ )/γ dγ

)
(1− Pout), (24)

wherePout is given by (5). The cutoff levelγo can be selected to achieve a specified outage
probability or, alternatively (as shown in Figures 2, 3, and 4), to maximize (24).

By substituting the CNR distribution (2) in (23) we find that the capacity per unit band-
width of an NMF channel with total channel inversion,<C>cifr /W , is given for allm ≥ 1
by

<C>cifr

W
= log2

(
1+ m− 1

m
γ

)
. (25)

Thus the capacity of a Rayleigh fading channel (m = 1) is zero in this case. Note that the
capacity of this policy for an NMF channel is the same as the capacity of an AWGN channels
with equivalent CNR=m−1

m
γ .

With truncated channel inversion the capacity per unit bandwidth< C >tifr /W

[bits/sec/Hz] can be expressed in terms ofγ andγo by substituting (2) into (24), which yields

<C>tifr

W
= log2

(
1+ γ 0(m)

m 0(m− 1,mγo/γ )

)
0(m,mγo/γ )

0(m)
, ∀m ≥ 1. (26)

For the special case of the Rayleigh fading channel (m = 1), the capacity per unit bandwidth
with truncated channel inversion reduces to

<C>tifr

W
= log2

(
1+ γ

E1(γo/γ )

)
e−γo/γ . (27)
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Figure 2. Capacity per unit bandwidth for a Rayleigh fading channel (m = 1) under different adaption policies.

3.4. NUMERICAL RESULTS

Figures 2, 3, and 4 show the capacity per unit bandwidth as a function ofγ for a NMF
channel under the three different adaptive policies form = 1 (Rayleigh channel),m = 2,
andm = 4, respectively. We see from these figures that the capacity of NMF channels is
always smaller than the capacity of an AWGN channel forγ ≥ 0 dB but converges to it as the
m parameter increases or, equivalently, as the amount of fading decreases. We also see that
optimal power and rate adaptation yields a small increase in capacity over just optimal rate
adaptation, and this small increase in capacity diminishes as the average received CNR and/or
fading parameterm increases. Recall that the capacity with just rate adaptation is the same as
the capacity of a non-adaptive system with only receiver information. Hence these numerical
results also show that transmitter adaptation with respect to channel variations provides very
little capacity gain over non-adaptive systems. Note finally that fixed rate transmission with
channel inversion suffers the largest capacity penalty. However, this penalty diminishes as the
amount of fading decreases.
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Figure 3. Capacity per unit bandwidth for a Nakagami fading channel withm = 2, and for different adaption
policies.

4. AdaptiveM-QAM Modulation

4.1. PROPOSEDADAPTIVE SCHEMES

The BER of coherentM-QAM with two-dimensional Gray coding over an additive white
Gaussian noise (AWGN) channel assuming perfect clock and carrier recovery can be well
approximated by [6]

BER(M, γ ) ' 0.2 exp

(
− 3 γ

2 (M − 1)

)
. (28)

Exact expressions for the BER of “square”M-QAM (when the number of bits per symboln
is even) are known [22, Chapter 5], and are plotted by the solid lines in Figure 5. On the other
hand, tight upper-bounds on the BER of “non-square”M-QAM (when the number of bits per
symboln is odd) are also available [23, p. 283], and are plotted by the cross/solid lines in
Figure 5. For comparison, the dashed lines in this figure show the BER approximation (28)
for different values ofM. Note that the approximate BER expression upper bounds the exact
BER forM ≥ 4 and for BER≤ 10−2, which is the BER range of interest. We will use this
approximation when needed in our analysis since it is “invertible” in the sense that it provides
a simple closed-form expression for the link spectral efficiency ofM-QAM as a function of
the CNR and the BER. In addition, (28) and its inverse are very simple functions which lead,
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Figure 4. Capacity per unit bandwidth for a Nakagami fading channel withm = 4, and for different adaption
policies.

as shown below, to closed-form analytical expressions and insights that are unattainable with
more complicated BER expressions.

Assuming ideal Nyquist pulses and given a fixed CNR (γ ) and BER (BER0), the spectral
efficiency of continuous-rateM-QAM can be approximated by inverting (28), giving

R

W
= log2(M) = log2

(
1+ 3 γ

2K0

)
, (29)

whereK0 = − ln(5 BER0). The adaptive continuous rate (ACR)M-QAM scheme responds
to the instantaneous channel CNR fluctuation by varying the number of bits per symbol ac-
cording to (29). In the context of this paper, continuous-rate means that the number of bits per
symbol is not restricted to integer values. While continuous-rateM-QAM is possible [24], it
is more practical to study the performance of adaptive discrete rate (ADR)M-QAM, where
the constellation sizeMn is restricted to 2n for n a positive integer. In this case the scheme
responds to the instantaneous channel CNR fluctuation by varying its constellation size as
follows. The CNR range is divided intoN + 1 fading regions, and the constellation sizeMn

is assigned to thenth region (n = 0,1, · · · , N). When the received CNR is estimated to be in
thenth region, the constellation sizeMn is transmitted.

Suppose we set a target BER equal to BER0. The region boundaries (or switching
thresholds){γn} are then set to the CNR required to achieve the target BER0 using Mn-QAM
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Figure 5. BER for M-QAM versus CNR.

over an AWGN channel. Specifically

γ1 = [erfc−1(2 BER0)]2,
γn = 2

3
K0 (2

n − 1); n = 0,2,3, · · · , N,
γN+1 = +∞, (30)

where erfc−1(.) denotes the inverse complementary error function. When the switching
thresholds are chosen according to (30), the system will operate with a BER below the target
BER, as will be confirmed in Section 4.4. Note in particular that all theγns (exceptγ1) are
chosen according to (28). Since (28) is an upper-bound of the BER only forM ≥ 4, γ1 is
chosen according to the exact BER performance of 2-QAM (BPSK). The thick line in Figure 6
shows the number of bits per symbol as a function of the received CNR for ADRM-QAM
with 8-regions, along with the corresponding switching thresholds. For comparison the thin
line in this figure shows the bits per symbol of ACRM-QAM.

4.2. OUTAGE PROBABILITY

Since no data is sent when the received CNR falls belowγ1, the ADRM-QAM scheme suffers
an outage probability,Pout, of

Pout =
∫ γ1

0
pγ (γ ) dγ = 1−

0
(
m,

mγ1
γ

)
0(m)

. (31)
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Figure 6. Number of bits per symbol versus CNR.

Figure 7. Outage probability in Nakagami fading.
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Figure 7 shows the outage probability for various values of the Nakagami fading parameter
and for target BERs of 10−3 and 10−6, respectively.

4.3. ACHIEVABLE SPECTRAL EFFICIENCY

Integrating (29) over (2) and following the same steps of Section 3.2 which obtained (20),
we find the average link spectral efficiency,< R >acr /W , of the ACRM-QAM over NMF
channels as

<R>acr

W
= e

2mK0
3γ

ln(2)

m−1∑
k=0

(
2mK0

3γ

)k
0

(
−k, 2mK0

3γ

)
. (32)

The average link spectral efficiency,< R >adr /W , of the ADRM-QAM over NMF
channels is just the sum of the data rates (log2[Mn] = n) associated with the individualN + 1
regions, weighted by the probabilityan =

∫ γn+1
γn

pγ (γ ) dγ that the CNRγ falls in thenth
region:

<R>adr

W
=

N∑
n=1

n an, (33)

where theans can be expressed as

an =
0
(
m,

m γn
γ

)
− 0

(
m,

m γn+1
γ

)
0(m)

. (34)

Figures 8, 9, and 10 show the average link spectral efficiency of ACRM-QAM (32) and
ADR M-QAM (33) for a target BER0 = 10−3 and form=1,m = 2, andm = 4, respectively.
The Shannon capacity using constant-power and variable-rate (20) is also shown for compar-
ison, along with the spectral efficiency of nonadaptive 2-QAM (BPSK). This latter efficiency
is found by determining the value of the average received CNR for which the average BER of
nonadaptive BPSK over Nakagami fading channel, as given by (38), equals the target BER.
Note that for a target BER of 10−3 the achievable spectral efficiency of ACRM-QAM comes
within 5 dB of the Shannon capacity limit. ADRM-QAM suffers a minimum additional
1.2 dB penalty, whereas nonadaptive uncoded BPSK suffers a large spectral efficiency penalty.
Hence contrary to the capacity results (which do not have any complexity constraints), adapt-
ive systems perform much better than non-adaptive ones in uncoded situations. This implies
that the gain of adaptive systems over non-adaptive ones vary inversely with the system coding
complexity.

4.4. AVERAGE BIT ERROR RATE

ACRM-QAM always operates at the target BER. However, since the choice ofMn in ADR
M-QAM is done in a conservative fashion, this discrete technique operates at an average BER,
<BER>adr, smaller than the target BER. This BER can be computed exactly as the ratio of
the average number of bits in error over the total average number of transmitted bits:

<BER>adr=
∑N

n=1 n BERn∑N
n=1 n an

, (35)
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Figure 8. Achievable spectral efficiency for a target BER of 10−3 andm = 1 (Rayleigh fading).

where

BERn =
∫ γn+1

γn

BER(Mn, γ ) pγ (γ ) dγ . (36)

Using (2) and the approximation (28) in (36)BERn can be expressed in closed-form as

BERn = 0.2

0(m)

(
m

γ

)m
0(m, bnγn)− 0(m, bnγn+1)

(bn)
m

, (37)

where

bn = m

γ
+ 3

2 (2n − 1)
; n = 1,2, · · · , N.

BERn can also be computed exactly by using the exact expressions for the BER(Mn, γ ) as
given in [22, Chapter 5] and [10].

Figures 11, 12, and 13 show the average BER for ADRM-QAM for a target BER of
10−3 and form = 1, m = 2, andm = 4, respectively. The BER calculations based on
the approximation (37) are plotted as solid lines whereas the exact average BERs are plotted
as star/solid lines. The average BER of nonadaptive uncoded BPSK over Nakagami fading
channel is given by [25, Appendix A]

<BER>bpsk= 1

2

√
γ

π

mm

(m+ γ )m+1/2

0(m+ 1/2)

0(m+ 1)
2F1

(
1,m+ 1/2;m+ 1; m

m+ γ
)
,(38)
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Figure 9. Achievable spectral efficiency for a target BER of 10−3 andm = 2.

where2F1(., .; .; .) denotes the Gauss’ hypergeometric function [11]. We plot (38) in Figures
11, 12, and 13 in dashed lines for comparison with (35).

In these figures we observe similar trends in the average BER for various values of the
m parameter. For instance, we see that the average BER of ADRM-QAM is well beneath
the 10−3 target BER. This is due to the fact that the thresholdsγ1, γ2, · · · , γN are chosen so
that the instantaneous BER is guaranteed to be always lower then the target BER. Clearly this
conservative design choice can be relaxed and the predetermined thresholds can be optimized
so that only the average BER is lower than the target BER [26]. In that case higher spectral
efficiency can be achieved. Recall that the approximation (28) lower bounds the exact BER
forM=2 and that ADRM-QAM often uses the 2-QAM constellation (B-PSK) at low average
CNRs. This explains why the average BER based on the approximation (37) lower bounds
the exact average BER forγ ≤ 10 dB. Conversely, because of the fact that the approximation
(28) upper bounds the exact BER forM > 2 and because ADRM-QAM often uses the high
constellation sizes at high average CNRs, the closed-form approximate average BER for ADR
M-QAM tightly upper-bounds the exact average BER forγ ≥ 10 dB. Since ADRM-QAM
uses the largest available constellation often when the average CNR is large, the average BER
prediction asγ increases becomes dominated by the BER performance of that constellation.
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Figure 10. Achievable spectral efficiency for a target BER of 10−3 andm = 4.

5. Impact of Time Delay

Recall from Section 2.1 that the choice of the constellation size is based on a channel estimate
at timet , whereas the data are sent over the channel at timet + τ such thatτf b ≤ τ ≤ τt . If
a delay ofτf b degrades BER significantly, then this adaptive technique will not work, since
τf b is an inherent and unavoidable parameter of the system. However, if a delay ofτ ≥ τf b
has a small impact on the BER then we should chooseτt as large as possible so that we meet
the BER requirement while minimizing the rate of system reconfiguration. In this section we
analyze the impact of time delay on the performance of adaptiveM-QAM over NMF channels,
assuming perfect channel estimates. Note that this issue has also been addressed in a recent
paper [27] by Goeckel who considered the impact of channel variations on adaptive coded
modulations over Rayleigh fading channels.

5.1. FADING CORRELATION

Investigating the impact of time delay requires the second-order statistics for the channel
variation, which are known for Nakagami fading. Letα andατ denote the channel gains at a
time t andt + τ , respectively. For a slowly-varying channel we can assume that theaverage
received power remains constant over the time delayτ (i.e.,� = E(α2) = E(α2

τ )). Under
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Figure 11. Average BER for a target BER of 10−3 andm = 1 (Rayleigh).

Figure 12. Average BER for a target BEr of 10−3 andm = 2.
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Figure 13. Average BER for a target BER of 10−3 andm = 4.

these conditions the joint PDFpα,ατ (α, ατ ) of these two correlated Nakagami-m distributed
channel gains is given by [2, (126)]

pα,ατ(α, ατ ) =
4 (α ατ )m

(1− ρ) 0(m) ρ(m−1)/2

(m
�

)m+1
Im−1

(
2m
√
ρ αατ

(1− ρ)�
)

exp

(
−m (α

2+ α2
τ )

(1− ρ) �
)
, (39)

whereIm−1(.) is the(m−1)th-order modified Bessel function of the first kind [11], andρ is the
correlation factor betweenα andατ . Since Nakagami fading assumes isotropic scattering of
the multipath components,ρ can be expressed in terms of the time delayτ , the mobile speed,
v [m/s], and the wavelength of the carrier frequencyλc [m] asρ = J 2

0 (2πfDτ), whereJ0(.)

is the zero-order Bessel function of the first kind [11], andfD = v/λc [Hz] is the maximum
Doppler frequency shift [28, p. 31].

The PDF ofατ conditioned onα, pατ /α(ατ /α), is given by

pατ /α(ατ /α) =
pατ ,α(ατ , α)

pα(α)
. (40)

Inserting (1) and (39) in (40) and expressing the result in terms of the CNRsγ andγτ yields

pγτ /γ (γτ /γ ) =
m

(1− ρ)γ
(
γτ

ρ γ

)(m−1)/2

Im−1

(
2m
√
ργ γτ

(1− ρ) γ
)

exp

(
−m(ργ + γτ )
(1− ρ) γ

)
. (41)
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5.2. ANALYSIS

5.2.1. Adaptive Continuous RateM-QAM
For all delaysτ let the communication system be configured according toγ (CNR atτ = 0)
such thatM(γ ) is given by

M(γ ) = 1+ 3 γ

2K0
. (42)

The constellation sizeM(γ ) is based on the valueγ at timet , but that constellation is trans-
mitted over the channel at timet + τ , whenγ has changed toγτ . SinceM does not depend
on γτ (CNR at timeτ ), time delay does not affect the link spectral efficiency< log2M>, as
calculated in Section IV-C. However, delay affects the instantaneous BER, which becomes a
function of the “mismatch” betweenγτ andγ :

BER(γτ/γ ) = BER(M(γ ), γτ ) = 0.2 (5 BERo)
γτ /γ . (43)

Integrating (43) over the conditional PDF (41) yields the average BER conditioned onγ ,
BER(γ ), as

BER(γ ) =
∫ +∞

0
BER(γτ/γ ) pγτ /γ (γτ/γ ) dγτ . (44)

Inserting (41) and (43) in (44), and using the change of variablez =
(
K0
γ
+ m

γ (1−ρ)
)
γτ ,

BER(γ ) can be written in closed-form with the help of the generalized MarcumQ-function
of orderm,Qm(., .) defined by [29, p. 299, (11.63)]

Qm(α, β) = 1

αm−1

∫ ∞
β

zm exp

[
−
(
z2+ α2

2

)]
Im−1(αz) dz

as

BER(γ ) = 0.2

(
m γ

m γ + γ (1− ρ) K0

)m
exp

(
− ρ K0 m γ

m γ + γ (1− ρ) K0

)
×

×Qm

(
ρ m2 γ 2

γ (1− ρ)(mγ + γ (1− ρ)K0)
,0

)
.

(45)

Using the recurrence relation [29, p. 299, (11.64)]

Qm+1(x, y) = Qm(x, y) +
(y
x

)m/2
Im(2
√
xy) e−x, (46)

we get that for allx,Qm(x,0) =Q1(x,0), which can be shown to equal 1. Therefore, BER(γ )
reduces to:

BER(γ ) = 0.2

(
m γ

m γ + γ (1− ρ) K0

)m
exp

(
− ρ K0 m γ

m γ + γ (1− ρ) K0

)
. (47)

Although this formula was derived for integerm it is also valid for all non-integer values of
m ≥ 1/2. Averaging (47) over the PDF ofγ (2) yields the average BER of ACRM-QAM,
<BER>acr, as

<BER>acr=
∫ +∞
γ1

BER(γ ) pγ (γ ) dγ . (48)



138 Mohamed-Slim Alouini and Andrea J. Goldsmith

Finally, using (47) in (48) and making the substitutionu = m γ

m γ+(1−ρ)K0γ
yields

<BER>acr= 0.2 (1− ρ)m Km
0

0(m)

∫ 1

u1

u2m−1

(1− u)m+1
exp

(
−K0u(1− ρu)

1− u
)
du, (49)

where

u1 = m γ1

m γ1+ (1− ρ)K0γ
.

Since this analysis assumes continuous rate adaptation and sinceMn(γ ) ≤ M(γ ) for all γ ,
(49) represents an upper-bound on the average BER degradation for ADRM-QAM, as will
be confirmed in the following sections.

5.2.2. Adaptive Discrete RateM-QAM
Suppose now that the constellation sizeMn is chosen based on the value ofγ according to
the ADRM-QAM scheme described in Section 4.1. However the constellation is transmitted
over the channel whenγ has changed toγτ . As in Section 5.2.1, we can easily see that the
link spectral efficiency of ADRM-QAM is unaffected by time delay. However, delay affects

<BER>adr, which is computed from (35) withBERn replaced byBER
′
n, where

BER
′
n=
∫ γn+1

γn

∫ ∞
0

BER(Mn, γτ ) pγτ /γ (γτ/γ ) dγτ pγ (γ ) dγ .

Using again the generalized MarcumQ-functions, it can be shown that

BER
′
n =

0.2

0(m)

(
m

γ

)m
0(m, b′nγn)− 0(m, b′nγn+1)

(bn)
m

, (50)

where

b′n =
m

γ
+ 3 ρ m

3(1− ρ)γ + 2m(2n − 1)
; n = 1,2, · · · , N.

Note that asρ → 1 (i.e., τ → 0), b′n → bn, andBER
′
n (50) reduces toBERn (37), as

expected.

5.3. NUMERICAL RESULTS

Figures 14 and 15 show< BER>acr and< BER>adr as a function of the normalized time
delayfDτ for different values of the Nakagamim parameter, for a target BER of 10−3 and
10−6, respectively. It can be seen from Figures 14 and 15 that a normalized time delay up
to about 10−2 can be tolerated without a noticeable degradation in the average BER. For
example, for a 900 MHz carrier frequency and a target BER of 10−3, a time delay up to 3.33
ms can be tolerated for pedestrians with a speed of 1 m/s (3.6 km/hr), and a time delay up to
0.133 ms can be tolerated for mobile vehicles with a speed of 25 m/s (90 km/hr). Comparing
Figures 14 and 15, we see that systems with the lower BER requirements of 10−6 are more
sensitive to time delay, as they will suffer a higher “rate of increase” in BER. For example, in
Rayleigh fading, systems with a 10−3 BER requirement suffer about one order of magnitude
degradation forfDτ between 10−2 and 10−1, whereas systems with a 10−6 BER requirement
suffer about four orders of magnitude degradation for the same range offDτ . However, in
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Figure 14. Average BER vs. normalized time delay for a BER0 of 10−3, γ̄ = 20 dB, and 5 fading regions.

both cases these systems will be able to operate satisfactorily if the normalized delay is below
the critical value of 10−2.

6. Conclusion

We have studied the capacity of NMF channels with an average power constraint for three
power and rate adaptation policies. We obtain closed-form solutions for NMF channel capacity
for each power and rate adaptation strategy. Our results show that optimal power and rate
adaptation yields a small increase in capacity over just optimal rate adaptation with constant
power or equivalently the capacity of non-adaptive systems, and this small increase in capacity
diminishes as the average received carrier-to-noise ratio, and/or them parameter increases.
Fixed rate transmission with channel inversion suffers the largest capacity penalty. However,
this penalty diminishes as the amount of fading decreases. We then proposed and studied the
performance of practical constant-power variable-rateM-QAM schemes over NMF channels
assuming perfect channel estimation and negligible time delay. We determined their spectral
efficiency and compared this to the theoretical maximum. Our results show that for a target
BER of 10−3, the spectral efficiency of adaptive continuous rateM-QAM comes within 5 dB
of the Shannon capacity limit and adaptive discrete rateM-QAM comes within 6.2 dB of
this limit, whereas nonadaptive uncoded BPSK suffers a large spectral efficiency penalty. In
view of the capacity results we can thus conclude that the gain of adaptive systems over non-
adaptive ones vary inversely with the system coding complexity. We also analyzed the impact
of time delay on the BER of adaptiveM-QAM. Results show that systems with low BER
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Figure 15. Average BER vs. normalized time delay for a BER0 of 10−6, γ̄ = 20 dB, and 5 fading regions.

requirements will be more sensitive to time delay but will still be able to operate satisfactorily
if the normalized time delay is below the critical value of 10−2.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and
suggestions which enhanced the quality of the paper.

References

1. K. Pahlavan and A.H. Levesque, “Wireless Data Communications”,Proc. IEEE, Vol. 82, pp. 1398–1430,
1994.

2. M. Nakagami, “Them-Distribution – A General Formula of Intensity Distribution of Rapid Fading”, in
Statistical Methods in Radio Wave Propagation, pp. 3–36, Pergamon Press: Oxford, U.K., 1960.

3. J.K. Cavers, “Variable-Rate Transmission for Rayleigh Fading Channels”,IEEE Trans. Commun.,
Vol. COM-20, pp. 15–22, 1972.

4. T. Ue, S. Sampei and N. Morinaga, “Symbol Rate and Modulation Level Controlled Adaptive Modula-
tion/TDMA/TDD for Personal Communication Systems”, inProc. IEEE Veh. Technol. Conf. VTC ’95,
Chicago, IL, July 1995, pp. 306–310. Full paper published in theIEICE Trans. Commun., Vol. E78-B, pp.
1117-1124, 1995.

5. W.T. Webb and R. Steele, “Variable Rate QAM for Mobile Radio”,IEEE Trans. on Commun., Vol. COM-43,
pp. 2223–2230, 1995.

6. A.J. Goldsmith and S.G. Chua, “Variable-Rate Variable-Power M-QAM for Fading Channels”,IEEE Trans.
Commun., Vol. COM-45, pp. 1218–1230, 1997.



Adaptive Modulation over Nakagami Fading Channels141

7. H. Matsuoka, S. Sampei, N. Morinaga and Y. Kamio, “Adaptive Modulation System with Variable Cod-
ing Rate Concatenated Code for High Quality Multi-Media Communication Systems”, inProc. IEEE Veh.
Technol. Conf. VTC ’96, Atlanta, GA, April 1996, pp. 487–491. Full paper published in theIEICE Trans.
Commun., Vol. E79-B, pp. 328–334, 1996.

8. A. Goldsmith, “Variable-Rate Coded M-QAM for Fading Channels”, inProc. Communication Theory Mini-
Conference (CTMC-III) in conjunction with IEEE Global Commun. Conf. GLOBECOM ’94, San Fransisco,
CA, November 1994, pp. 186–190.

9. A. Goldsmith and P. Varaiya, “Capacity of Fading Channels with Channel Side Information”,IEEE Trans.
on Information Theory, Vol. IT-43, pp. 1896–1992, 1997.

10. J. M. Torrance and L. Hanzo, “Upper Bound Performance of Adaptive Modulation in a Slow Rayleigh Fading
Channel”,Electron. Lett., Vol. 32, pp. 718–719, 1996.

11. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, Academic Press: San Diego, CA,
fifth edn., 1994.

12. H. Suzuki, “A Statistical Model for Urban Multipath Propagation”,IEEE Trans. on Commun., Vol. COM-25,
pp. 673–680, 1977.

13. A.U. Sheikh, M. Handforth and M. Abdi, “Indoor Mobile Radio Channel at 946 MHz: Measurements and
Modeling”, in Proc. IEEE Veh. Technol. Conf. VTC ’93, Secaucus, NJ, May 1993, pp. 73–76.

14. M.-S. Alouini and A. Goldsmith, “Capacity of Rayleigh Fading Channels under Different Adaptive
Transmission and Diversity Techniques”,IEEE Trans. Veh. Technol., to appear.

15. W.C.Y. Lee, “Estimate of Channel Capacity in Rayleigh Fading Environment”,IEEE Trans. Veh. Technol.,
Vol. VT-39, pp. 187–190, 1990.

16. C.G. Günther, “Comment on ‘Estimate of Channel Capacity in Rayleigh Fading Environment’ ”,IEEE Trans.
Veh. Technol., Vol. VT-45, pp. 401–403, 1996.

17. R.J. McEliece and W.E. Stark, “Channels with Block Interference”,IEEE Trans. on Information Theory,
Vol. IT-30, pp. 44–53, 1984.

18. L. Ozarow, S. Shamai and A. Wyner, “Information Theoretic Considerations for Cellular Mobile Radio”,
IEEE Trans. on Veh. Technol., Vol. VT-43, pp. 359–378, 1994.

19. T. Ericson, “A Gaussian Channel with Slow Fading”,IEEE Trans. Inform. Theory, Vol. IT-16, pp. 353–355,
1970.

20. Y.-D. Yao and A.U.H. Sheikh, “Evaluation of Channel Capacity in a Generalized Fading Channel”, inProc.
IEEE Veh. Technol. Conf. VTC ’93, Secaucus, NJ, May 1993, pp. 134–137.

21. R. Buz, “Information Theoretic Limits on Communication over Multipath Fading Channels”, inProc. IEEE
Int. Symposium Inform. Theory ISIT ’95, Whistler, BC, Canada, September 1995, p. 151.

22. W.T. Webb and L. Hanzo,Modern Quadrature Amplitude Modulation, IEEE Press: New York, 1994.
23. J.G. Proakis,Digital Communications, McGraw-Hill, New York, NY, second edn., 1989.
24. G.D. Forney Jr., R.G. Gallager, G.R. Lang, F.M. Longstaff and S.U. Qureshi, “Efficient Modulation for

Band-Limited Channels”,IEEE J. Select. Areas Commun., Vol. SAC-2, pp. 632–646, 1984.
25. T. Eng and L.B. Milstein, “Coherent DS-CDMA Performance in Nakagami Multipath Fading”,IEEE Trans.

Commun., Vol. COM-43, pp. 1134–1143, 1995.
26. J.M. Torrance and L. Hanzo, “Optimisation of Switching Levels for Adaptive Modulation in a Slow Rayleigh

Fading Channel”,Electron. Lett., Vol. 32, pp. 1167–1169, 1996.
27. D. Goeckel, “Robust Adaptive Coded Modulation for Time-Varying Channels with Delayed Feedback”, in

Proc. Thirty-Fifth Annual Allerton Conf. on Communication, Control, and Computing, September 1997,
pp. 370–379.

28. W.C. Jakes,Microwave Mobile Communication, IEEE Press: Piscataway, NJ, second edn., 1994.
29. N.M. Temme,Special Functions – An Introduction to the Classical Functions of Mathematical Physics, John

Wiley & Sons: New York, NY, 1996.



142 Mohamed-Slim Alouini and Andrea J. Goldsmith

Mohamed-Slim Alouini was born in Tunis, Tunisia. He received the “Diplôme d’Ingénieur”
degree from the Ecole Nationale Supérieure des Télécommunications (TELECOM Paris),
Paris, France, and the “Diplôme d’Etudes Approfondies (D.E.A.)” degree in Electronics from
the University of Pierre & Marie Curie (Paris VI), Paris, France, both in 1993. He received
the M.S.E.E. degree from the Georgia Institute of Technology (Georgia Tech), Atlanta, GA,
U.S.A., in 1995, and the Ph.D. degree in electrical engineering from the California Institute
of Technology (Caltech), Pasadena, CA, U.S.A., in 1998.

While completing his D.E.A. thesis, he worked with the optical submarine systems re-
search group of the French national center of telecommunications (CNET-Paris B), on the
development of future transatlantic optical links. While at Georgia Tech, he conducted re-
search in the area ofKa-band satellite channel characterization and modeling. From June 1998
to August 1998, he was a Post-Doctoral Fellow with the Communications group at Caltech
carrying out research on adaptive modulation techniques and on CDMA communications. He
joined the department of Electrical and Computer Engineering of the University of Minnesota,
Minneapolis, in September 1998, where his current research interests include statistical mod-
eling of multipath fading channels, adaptive modulation techniques, diversity systems, and
digital communication over fading channels.

He is a recipient of a National Semiconductor Graduate Fellowship Award. He is a member
of the IEEE Communications and Vehicular Technology Societies.

Andrea J. Goldsmith received the B.S., M.S., and Ph.D. degrees in electrical engineering
from U.C. Berkeley in 1986, 1991, and 1994, respectively.

From 1986–1990 she was affiliated with Maxim Technologies, where she worked on packet
radio and satellite communication systems, and from 1991–1992 she was affiliated with AT&T
Bell Laboratories, where she worked on microcell modeling and channel estimation. She
was an assistant professor of Electrical Engineering at the California Institute of Technology



Adaptive Modulation over Nakagami Fading Channels143

from 1994–1998, and is currently an assistant professor of Electrical Engineering at Stanford
University. Her research includes work in capacity of wireless channels, wireless communic-
ation theory, adaptive modulation and coding, joint source and channel coding, and resource
allocation in cellular systems.

Dr. Goldsmith is a recipient of the National Science Foundation CAREER Development
Award, ONR Young Investigator Award, two National Semiconductor Faculty Development
Awards, an IBM Graduate Fellowship, and the David Griep Memorial Prize from U.C. Berke-
ley. She is an editor for the IEEE Transactions on Communications and the IEEE Personal
Communications Magazine.


