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Abstract—In this letter, we propose two modifications to be-
lief propagation (BP) decoding algorithm. The modifications are
based on reducing the reliability of messages throughout the iter-
ation process, and are particularly effective for short low-density
parity-check codes, where the existence of cycles makes the orig-
inal BP algorithm perform suboptimal. The proposed algorithms,
referred to as ‘“normalized BP”” and “‘offset BP,” reduce the abso-
lute value of the outgoing log-likelihood ratio messages at variable
nodes by using a multiplicative factor and an additive factor, re-
spectively. Simulation results show that both algorithms perform
more or less the same, and both outperform BP in error perfor-
mance.

Index Terms—Belief propagation, iterative decoding, low-den-
sity parity-check (LDPC) codes, message-passing decoding algo-
rithms, normalized belief propagation, offset belief propagation.

1. INTRODUCTION

ALLAGER proposed low-density parity-check (LDPC)
codes in his thesis, along with several message-passing
decoding algorithms [1], among which belief propagation
(BP) algorithm is known to have the best performance. The
remarkable performance of LDPC codes with message-passing
decoding has positioned them as strong candidates for
error-correction in many digital communication systems. As
a linear block code, an LDPC code can be represented by a
Tanner graph (TG) [2]. A TG is a bipartite graph in which one
set of nodes, the variable nodes, corresponds to code symbols
and the other set of nodes, the check nodes, corresponds to the
set of parity-check constraints which define the code. An edge
exists between a variable node v and a check node c if and only
if v appears in the parity-check equation corresponding to c.
Given a TG for an LDPC code, iterative implementation of
BP, which proceeds as if no cycles were present in the graph,
has been shown to deliver impressive results. In fact, it is well-
known that if the TG is cycle-free then the BP converges to a
posteriori probabilities for variable nodes [2]. In many applica-
tions, however, LDPC codes have short to intermediate lengths
(a few hundred to a few thousand bits) and the assumption of
cycle-free graph is not valid. Consequently, in such cases, there
is no guarantee that BP is optimal. Although, the nonoptimality
of BP on graphs with cycles is well-known, only a few modi-
fied versions of BP that can outperform the standard BP algo-
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rithm have been introduced [3]-[5]. In [3], a multistage itera-
tive decoding algorithm that combines BP with ordered statistic
decoding has been used to bridge the error performance gap
between BP and maximum likelihood decoding. The compu-
tational complexity however is considerably higher than that
of BP. In [4], the authors devise a “probabilistic schedule” for
message passing between variable nodes and check nodes in
the TG, while keeping the operations performed in variable and
check nodes the same as those of standard BP. Although the
method of [4] has more or less the same total number of com-
putations as standard BP, the implementation of schedule to
control the flow of messages is the extra complexity associ-
ated with this method. In [5], the authors present “generalized
belief propagation (GBP)” algorithms that work based on the
communication among certain regions of nodes in the graph.
Although GBP algorithms can outperform standard BP for a
proper choice of regions, no systematic approach is yet known
for properly choosing the regions, particularly for graphs with a
large number of nodes. For more references on work related to
GBP algorithms, see [5].

In this letter, we introduce two very simple modifications to
BP algorithm, which provide nonnegligible improvement in the
performance of BP, particularly at short and intermediate block
lengths. In Section II, we explain how the reliabilities in BP are
over-estimated for graphs with cycles. In Section III, the pro-
posed modifications are introduced. Sections IV and V contain
the simulation results, and conclusions, respectively.

II. OVERESTIMATION OF RELIABILITIES IN BELIEF
PROPAGATION

We consider the transmission of code words over a binary
input additive white Gaussian noise (AWGN) channel, where
the input symbols are &-1. The channel output is processed by an
iterative BP decoder implemented in log-likelihood ratio (LLR)
domain which operates based on the so-called “flooding” or
“parallel” schedule [2], [4]. Moreover, we assume that only
extrinsic information is processed in both variable and check
nodes, i.e., each outgoing message along an edge e is only a
function of input messages coming to the node along edges
other than e. This guarantees that for a cycle-free TG, incoming
and outgoing messages through each edge are independent and
at the end, the algorithm produces correct marginal a posteriori
probabilities. However, for a graph with cycles, throughout the
iteration process, dependency is created among the incoming
messages to a node and/or among the incoming messages to
a variable node on one side, and the initial message of the
node, on the other side. In this case, BP algorithm will not be
optimal anymore. This implies that, in a graph with cycles, the
outgoing messages for BP, which would have been optimal for
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Fig. 1. The absolute value of the log-likelihood ratio is a monotonically

decreasing function of the average uncertainty.

a cycle-free graph, now have mistakenly a higher reliability,
or equivalently a lower uncertainty, on average. (Fig. 1 shows
that the magnitude of LLRs, as the reliability of messages, is a
monotonically decreasing function of the average uncertainty.)
In this work, we consider two remedies for the overestimation
of reliabilities, as explained in the following section.

III. NORMALIZED AND OFFSET BELIEF PROPAGATION

In normalized BP,! the outgoing message 1,,_,. from a vari-
able node v to a check node c is replaced by

mi;—m = 0.My—c (1)

where « is a positive number less than or equal to one, called
the multiplicative correction factor.? In offset BP however, the
correction factor is additive, and is applied by replacing the mag-
nitude of the outputs of variable nodes in BP by

/ _ |m11—>c| - /8
|m'n—>c| - { |mv—>c|

where (3 is a nonnegative number, called additive correction
factor (signs remain unchanged). The optimal values for cor-
rection factors « and 3 are functions of Ej /Ny, where Fj is
the average energy per information bit and Ny is the one-sided
power spectral density of AWGN. In general, optimal correction
factors also depend on the iteration number, and the node pair
(v, c). In this paper, for the sake of simplicity, we assume that o
and [ remain constant during the iteration process and are the
same for all pairs of variable and check nodes.

Myl > B

Imo—| < 8 @

IV. SIMULATION RESULTS

To investigate the performance and complexity of modified
BP algorithms, simulation results for an optimized irregular
LDPC code with parameters (n,k) = (1268,456) [4] are
presented. For all simulation results, the maximum number of

IThe same nomenclature is used in [6] to describe similar modifications at the
output of check nodes in the so-called min-sum algorithm. The offset operation
presented here is however slightly different than the one in [6] and provides
better results for BP.

21t was brought to our attention by the reviewers that the observation that the
performance of BP can be enhanced by scaling down the LLRs in the iteration
process was also made by M. Tanner as reported in [7] and [8].
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Fig. 2. Effect of @ on BER at E, /Ny’s 1.7(*), 2(x), and 2.3 (o) for (1268,
456) LDPC code decoded by normalized BP.
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Fig. 3. BER(—) and WER(- -) for (1268, 456) LDPC code decoded by BP(0),
algorithm of [3] (O), probabilistic scheduling with BP(¢), and normalized BP
with a = 0.94(x).

iterations is chosen to be 500. Also, for each Ej/Ng, enough
code words are simulated to generate at least 100 code word
errors. Fig. 2 shows bit error rate (BER) curves of normalized
BP versus « for different values of E,/Ny. It can be seen
that the optimal amount of correction required at each Ej /Ny
increases (optimal a decreases) with E,/Ny. This can be
justified by Fig. 1, as increasing Fj/Ny corresponds to less
average uncertainty, which in turn means moving to the left
on Fig. 1, where the curve is steeper. This is a region where a
slight error in message uncertainty due to using BP algorithm,
instead of a presumably optimal algorithm, can considerably
increase the magnitude of LLRs. From Fig. 2, one can also
observe that at lower values of Ej;, /Ny, BER is less sensitive to
«, and the optimal value of « is not very sensitive to Fy/Ny.
Simulation results for offset BP show the same trend for the
optimal value of 3. In fact, for the given code, the optimal value
of (3 is approximately 0.2 for a wide range of Fj /Ny values.
Moreover, we observe that, when optimized, normalized and
offset BP perform more or less the same, with normalized BP
performing slightly better at high Ey,/Ng’s. It is also worth
mentioning that the average number of iterations required for
convergence at each Fy, /Ny is more or less the same for both
algorithms and is just slightly smaller than that of standard BP.

In Fig. 3, we have BER and word error rate (WER) curves of
normalized BP with &« = 0.94 along with the curves for standard
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BP. The decoders are set to work in parallel and perform on the
same set of received vectors. In the same figure, we have also
shown the BER and WER curves of the algorithm in [3] from
[9] (BP + order — 1 with maximum of 50 iterations) as well as
the curves we obtained for BP with probabilistic scheduling. We
observe that BP with probabilistic scheduling performs more
or less the same as our proposed algorithm. It however has a
higher complexity. The algorithm of [3] outperforms our algo-
rithm with the gap closing down at higher values of Ej/Ng.3
The complexity of our algorithm however is much less. It should
be noted that in many cases the algorithms of [3] outperform
normalized and offset BP by a large margin. The improvement
obtained by the latter over standard BP is normally up to at most
0.3 dB, while the former can result in improvements of more
than 1 dB [3].

V. CONCLUSIONS

For short and moderate block lengths, due to the existence
of short cycles in the TG of LDPC codes, the messages passed
through the edges of the graph in BP algorithm are statistically
dependent. This implies that the “real” reliability of these mes-
sages is smaller compared to what is derived by BP under the as-
sumption of cycle-free graph. In this letter, we have introduced
two modified versions of BP algorithm, normalized and offset
BP, in which the reliability overestimation of the messages is
compensated for by using a multiplicative and an additive cor-
rection factor, respectively. Simulation results show that both al-
gorithms, when optimized, perform more or less the same, and

3Note that the real performance difference between the two algorithms seems
to be even less than what is reported here, as the curves for standard BP obtained
from [9] appear to outperform our BP curves in Fig. 3.
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they both provide nonnegligible improvement in error perfor-
mance over standard BP.

As a practical note, it is worth mentioning that normalized
BP with a fixed correction factor can be easily implemented
(with no additional transistors) by transistor scaling in current
conveyers used in analog implementation of BP [10].
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