
 1

Digital Receivers and Transmitters Using Polyphase Filter Banks
for Wireless Communications

fred harris, Fellow, IEEE, Chris Dick, Member, IEEE, Michael Rice, Senior Member IEEE

Abstract: This paper provides a tutorial overview of mul-
tichannel wireless digital receivers and the relationships
between channel bandwidth, channel separation, and
channel sample rate. The overview makes liberal use of
figures to support the underlying mathematics. A mul-
tichannel digital receiver simultaneously down-convert a
set of frequency division multiplexed (FDM) channels
residing in a single sampled data signal stream. In a
similar way, a multichannel digital transmitter simultane-
ously up-converts a number of baseband signals to as-
semble a set of FDM channels in a single sampled data
signal stream. The polyphase filter bank [1] has become
the architecture of choice to efficiently accomplish these
tasks. This architecture uses three [2, 3] interacting
processes to assemble or to disassemble the channel-
ized signal set. In a receiver these processes are an in-
put commutator to effect spectral folding or aliasing due
to a reduction in sample rate, a polyphase M-path filter
to time align the partitioned and resampled time series in
each path, and a discrete Fourier transform to phase
align and separate the multiple base-band aliases. In a
transmitter these same processes operate in a related
manner to alias baseband signals to high order Nyquist
zones while increasing the sample rate with the output
commutator.
 This paper presents a sequence of simple modifica-
tions to sampled data structures based on analog proto-
type systems to obtain the basic polyphase structure.
We further discuss ways to incorporate small modifica-
tions in the operation of the polyphase system to ac-
commodate secondary performance requirements.
MATLAB simulations of a 10, a 40, and a 50 channel
resampling receiver are included in the electronic ver-
sion of this paper. An animated version of the 10-
channel resampling receiver illustrates the time and fre-
quency response of the filter bank when driven by a
slowly varying linear FM sweep.

Manuscript received 2-May, 2002

fred harris is with the Department of Electrical Engineer-
ing, San Diego State University,
Chris Dick is with Xilinx, San Jose, CA.
Michael Rice is with the Department of Electrical Engi-
neering, Brigham Young University

Motivation: Radio receivers and transmitters perform a
sequence of invertible signal transformations in order to
communicate through imperfect band limited channels.
The transformations applied to waveforms are associ-
ated with disjoint frequency spans classically called
baseband, intermediate frequency (IF), and radio fre-
quency (RF). Early radios performed the desired trans-
formations using appropriate linear and non-linear
lumped and distributed analog circuit elements.
 The confluence of three technology areas has had
profound effect on the way we manipulate baseband and
low IF signals. Two of these areas, enabled by the tran-
sistor and later by integrated circuits (ICs), are the ana-
log-to-digital and digital-to-analog converter (ADC &
DAC) and the programmable microprocessor. The third
technology area is algorithm development by the digital
signal processing (DSP) community. These technologies
coupled with an educated and motivated work force led
inexorably to insertion of DSP in the signal-processing
path of radio receiver and transmitter systems.
 Intel’s former CEO Gordon Moore [4], observed that
the cost of performing a specified processing task on an
IC drops by a factor of two every 18-months or equiva-
lently, the amount of processing that can be performed
at a fixed cost doubles every 18-months. This relation-
ship, known as Moore’s law appears to be unique to the
semiconductor industry. A similar cost-performance
curve does not exist for general circuit components. A
consequence of Moore’s Law is the migration from de-
signs that assemble and integrate sub-system to designs
that are full systems on a Chip (SOC).
 An important participant in the semiconductor arena
is the Field Programmable Gate Array (FPGA) [5]. The
FPGA consists of a vast array of configurable logic tiles,
multipliers, and memory. This technology provides the
signal-processing engineer with the ability to construct a
custom data path that is tailored to the application at
hand. FPGAs offer the flexibility of instruction set digital
signal processors while providing the processing power
and flexibility of an ASIC. The FPGA enables significant
design cycle compression and time-to-market advan-
tages, an important consideration in an economic cli-
mate with ever decreasing market windows and short
product life cycles.

 2

 DSP based processing of baseband and low IF sig-
nals offer cost and performance advantages related to
manufacturability, insensitivity to environment, ability to
absorb design changes, and ease of feature insertion for
product evolution and differentiability. The DSP segment
of a radio enhances the radio while reducing its cost thus
enabling larger market penetration as well as new mar-
ket formation. DSP and RF and microwave communica-
tion systems are tightly coupled.
 The authors have written this paper to help the RF
and microwave engineer acquire an understanding of
the key work performed by their DSP partners in pursuit
of their common goal, the design and production of
competitive, high quality, RF communication and RF
monitoring systems. We start the paper with a review of
a standard architecture for analog transmitters and re-
ceivers. Here the interface between continuous and
sampled data is located at the end of the signal-
processing path and operates at the highest signal to
noise ratio with the lowest sample rate. We then present
variants of the standard architectures in which the oper-
ating conditions change to process signals at higher dy-
namic range and at higher sample rates. A common
variant of the high sample rate option is IF sampling.
 High sample rate converters offer the option in a re-
ceiver to acquire large segments of input bandwidth and
absorb much of the signal processing tasks and func-
tions in DSP algorithms. The dual task of assembling
large segments of bandwidth in a transmitter is implied
but is not addressed here. The receiver processing in-
cludes, partitioning, filtering, translation, and demodu-
lated. The remainder of the paper is restricted to descrip-
tion of various techniques to accomplish single or multi-
ple channel extraction of signal bands from the band-
width collected by high bandwidth converters.

Introduction: Base stations for cellular mobile commu-
nication systems [6] offer an example of a radio receiver
that must down-convert and demodulate multiple simul-
taneous narrowband RF channels. The traditional archi-
tecture of a radio receiver that performs this task is
shown in figure 1. This architecture contains N sets of
dual-conversion sub-receivers. Each receiver amplifies
and down-converts a selected radio-frequency (RF)
channel to an intermediate frequency (IF) filter that per-
forms initial bandwidth limiting.
 The output of each IF filter is again down converted
to baseband by matched quadrature mixers that are fol-
lowed by matched base-band filters that perform final
bandwidth control. Each quadrature down converted
signal is then converted to their digital representation by
a pair of matched analog-to-digital converters (ADC).
The output of the ADCs is processed by digital signal
processing (DSP) engines that perform the required
synchronization, equalization, demodulation, detection,
and channel decoding.

ADC

ADC

ADC

ADC

Base
Band
Proc

Base
Band
Proc

RF

RF

IF

IF

BB

BB

Digital BB

Digital BB

L0-1_A

L0-1_B

L0-N_B

L0-1_C

L0-N_C
L0-N_A

Sp
litt

er
 N

et
w

or
k

.........

.........

......

.........

Figure 1. First Generation RF Architecture of N-Channel

Receiver

 Figure 2 shows a base station companion radio
transmitter formed by N sets of dual conversion sub-
transmitters that modulate and up-convert multiple simul-
taneous narrowband RF channels. Note that the signal
flow for the transmitter chain is simply a reversal of the
signal flow of the receiver chain.

DAC

DAC

DAC

DAC

Base
Band
Proc

Base
Band
Proc

RF

RF

IF

IF

BB

BB

Digital BB

Digital BB

L0-1_A

L0-1_B

L0-N_B

L0-1_C

L0-N_C
L0-N_A

C
om

bi
ne

r N
et

w
or

k

.........

.........

......

.........

Figure 2. First Generation RF Architecture of N-Channel
Transmitter

 Gain and phase imbalance between the two paths
containing the quadrature mixers, the analog baseband
filters, and the ADC in an N-Channel receiver or N-
channel transmitter is the cause of cross talk between
the in-phase and quadrature (I/Q) components [7]. This
in turn results in coupling between the many narrowband
channels sometimes called ghosts or images. This spec-
tral coupling can be described compactly by examining
the model shown in figure 3. Here the composite I-Q
gain and phase imbalances have been assigned to the
quadrature term as the amplitude and phase shift of the
sinusoid.
 We can examine the unbalanced complex sinusoid
presented to the mixer pair and compare its spectrum to
that of the balanced spectrum. The complex sinusoid
shown in eq-1 is expanded in eq-2 to explicitly show the
positive and negative frequency components. Equation 3

IBMUSER
高亮

 3

uses the small signal approximation to obtain a simple
estimate of the effects of gain and phase imbalance on
the positive and negative frequency components of the
quadrature mixer signal. Figure 4 presents a graphical
visualization of these same spectral components.

A cos(t)ω0

sin(t+)ω α0-A ()1+ε

I(t)

Q(t)

f

f

| H(f)|

| H(f)|

Figure 3. Quadrature Down Converter With Gain and
Phase Imbalance

)]sin()1()[cos()(00 αωεω ++−= tjtAtg (1)

tj

tj

eAj

AA

eAj

AAtg

0

0

)sin()1(
2

)cos()1(
22

)sin()1(
2

)cos()1(
22

)(

ω

ω

αε

αε

αε

αε

−

+
+








 +

−








 ++








 +

−








 +−=

 (2)

tj

tj

ejA

ejAtg

0

0

2
)

2
1(

22
)(

ω

ω

αε

αε

−

+





 −+

+



 −≅

 (3)

 Besides the obvious coupling between the quadra-
ture components at the same frequency due to phase
imbalance, we see a coupling between positive and
negative frequencies due to both amplitude and phase
imbalance. To achieve an imbalance related spectral
image 40 dB below the desired spectral term, each im-
balance term must be less than 1% of the desired term.
It is difficult to sustain, over time and temperature, gain
and phase balance of analog components to better than

1%. Third generation wireless systems impose severe
requirements on level of I/Q balance. The need to
achieve extreme levels of I/Q balance motivates us per-
form the complex conversion process in the DSP do-
main.

Real

Imag

ω

-

A(1+)2
_ε

A 2
_ε

A 2
_α

A 2
_α

Figure 4. Spectral Components of Unbalanced Complex

Sinusoid

 Figures 5 and 6 present block diagrams of a second-
generation multichannel receiver and transmitter in
which the conversion from analog to digital (or digital to
analog) occurs at IF rather than at baseband. Examining
the receiver, we see that the down conversion of the
separate channels is performed by a set of digital down
converters and digital low pass filters. The digital proc-
ess can realize arbitrarily small levels of imbalance by
controlling the number of bits involved in the arithmetic
operations. Precision of coefficients used in the filtering
process sets an upper bound to spectral artifact levels at
–5 dB/bit so that 12-bit arithmetic can achieve image
levels below –60 dB. Thus the DSP based complex
down conversion does not introduce significant imbal-
ance related spectral terms. Similar comments apply to
the DSP based up-conversions in the digital transmitter.
The rule of thumb here is that the levels of spectral im-
ages are controlled to be below the quantizing noise
floor of the ADC or DAC involved in the conversion
process. A second advantage of digital translation proc-
ess is that the digital filters following or preceding the
mixers are designed to have linear phase characteris-
tics, a characteristic trivially simple to realize in digital
non-recursive filters [18].
 The dynamic range and conversion speed of the
ADC and the DAC becomes the limiting factor in the ap-
plication of the architectures shown in figures 5 and 6.
The dynamic range of the converter is determined to first
order, by the number of bits in the converter with each
bit contributing 6-dB [8]. The Nyquist criterion [9] estab-
lishes the minimum sample rate to obtain an alias free
representation of the sampled signal. The Nyquist crite-

 4

rion directs us to select the sample rate to exceed the
two-sided bandwidth of the signal. Converters have the
property that the product of sample rate and number of
conversion levels is a constant [10]. This relationship is
shown in eq-4 where b is the number of bits in the con-
verter. Equation 5, a rearrangement of eq-4, shows how
the number of bits varies inversely with the sample rate.

ADC

Base
Band
Proc

Base
Band
Proc

RF
IF

Digital IF

Digital BB

Digital BB
L0-A

L0-1_B

L0-N_B

L0-1_C

L0-N_C

......

.........

Figure 5. Second Generation RF Architecture of N-

Channel Receiver

DAC

Base
Band
Proc

Base
Band
Proc

RF IF

Digital IF

Digital BB

Digital BB
L0-A

L0-1_B

L0-N_B

L0-1_C

L0-N_C

.........

......

.........

Figure 6. Second Generation RF Architecture of N-
Channel Transmitter

 Figure 7 is a graphical presentation of this relation-
ship along with a scattering of data points showing the
conversion speed versus precision performance exhib-
ited by a number of current (mid-year 2002) ADCs. A
useful rule of thumb is that a converter operating at 10-
MHz sample rate can deliver 16-bit performance and
that for every doubling of the sample rate results in a 1-
bit (or 6-dB) reduction in conversion precision. The
sloped line in figure 7 matches this rule. The intercept of
this performance line is related to the aperture uncer-
tainty of the conversion process, a parameter that im-
proves slowly in response to advances in semiconductor
technology.

kf SAMPLE
b =)2(log2 (4)

)(log}{log 22 SAMPLEfkb −= (5)

log (f)2 S

S

bitsDynamic
 Range

2018 2422 26 282119 2523 27 29 30

16
17
18

15
14
13
12
11
10
9
8
7
6
5

100 dB

60 dB

80 dB

50 dB

10 1010 106 97 8 f
log (f)2 S

S

bitsDynamic
 Range

2018 2422 26 282119 2523 27 29 30

16
17
18

15
14
13
12
11
10
9
8
7
6
5

100 dB

60 dB

80 dB

50 dB

10 1010 106 97 8 f

Figure 7. Scatter Diagram Showing Speed-Precision
Performance of ADCs

 A final comment on ADCs is that the spurious terms
generated by converter non-linearities often exceed the
quantizing noise levels described by the –6dB per bit
rule. The true performance measure of the ADC is the
full bandwidth, full-scale spurious free dynamic range
(SPDR) [11].

 The limited dynamic range available from high speed
ADCs restricts the range of applications for the architec-
tures presented in figures 5 and 6 to IF center frequen-
cies to the low to mid 100’s of MHz. To extend the appli-
cation range of digital N-channel receivers and digital N-
channels transmitters we often use a hybrid scheme in
which the initial complex down conversion is performed
with analog I-Q mixers and the channelization is per-
formed digitally after the ADC. The first conversion can
be considered a block conversion to baseband that de-
livers the frequency band of interest to the DSP arena
for subsequent channelization. The hybrid forms of the
digital N-channel receiver and the digital N-channel
transmitter are shown in figures 8 and 9 respectively.
DSP techniques are applied to the digitized I-Q data to
balance the gain and phase offsets in the analog ADC
and DAC. DSP based I-Q balance correction is a stan-
dard signal conditioning task in high-end as well as con-
sumer based receivers and transmitters.

Digital Down Conversion: In the previous section we
described the process of sampling an analog IF signal or
complex analog baseband signal containing the set of N-
frequency division multiplexed channels to be further
processed or channelized by DSP techniques. We con-
sider the input signal to be composed of many equal-
bandwidth, equally spaced, frequency division multi-

IBMUSER
高亮

 5

plexed (FDM) channels as shown in figure 10. These
many channels are digitally down-converted to base-
band, bandwidth constrained by digital filters, and sub-
jected to a sample rate reduction commensurate with the
bandwidth reduction.

Base
Band
Proc

Base
Band
Proc

RF
IF

Wideband
 Digital BB

Narrowband
 Digital BB

Narrowband
 Digital BB

L0-A

L0-1_D

L0-N_D

L0-1_E

L0-N_E

...

.........

.........ADC

ADC

BB
L0-1_B

L0-1_C

Figure 8. Second Generation Hybrid RF Digital
N-Channel Receiver

Base
Band
Proc

Base
Band
Proc

RF IF

Wideband
 Digital BB

Narrowband
 Digital BB

Narrowband
 Digital BB

L0-A

L0-1_D

L0-N_D

L0-1_E

L0-N_E

.........

...

.........DAC

DAC

Wideband
 BB
L0-1_B

L0-1_C

RL

Figure 9. Second Generation Hybrid RF Digital
N-Channel Transmitter

......
fs

fBW

fs
M

f

F0 F1 F2 FM-2 FM-1

Figure 10. Input Spectrum of Frequency Division Multi-

plexed Signal to be Channelized

 The signal processing task can be performed as a
replica of the analog prototype solution by a DSP based
set of independent down-conversion processes as indi-
cated in figure 11. For clarity of presentation, we de-
scribe how digital frequency denoted by the angle θk is
derived from analog frequency fk. This change of vari-
ables is shown on equations 6 through 8. Equation 6
presents a complex sinusoid of frequency 2πfk. We note

that frequency is the time derivative of the time evolving
phase angle θ(t) and has units of radians/second. The
sampled data sinusoid is obtained by replacing the time
variable “t” with the sampled time variable “nT” as shown
in eq-7. Note that the units of the sample time variable
are samples and seconds/sample respectively. The an-
gle formed by the product 2πfk and T or by the equivalent
term 2πfk/fS, where fS=1/T, is shown in eq-8. Here the
product term 2πfk, denoted by θk, has units of radi-
ans/second by seconds/sample or radians/sample.

)2exp()(tfjtg kπ= (6)

)2exp()()(nTfjtgng knTt π== = (7)

)exp()2exp()(njn
f
f

jng k
S

k θπ == (8)

M-to-1

M-to-1

M-to-1

fs

M-to-1

h(n)

h(n)

h(n)

h(n)

Low-Pass Filter

Low-Pass Filter

Low-Pass Filter

Low-Pass Filter

e -j nθ0

e -j nθk

e -j nθ1

e -j nθM-1

FDM TDM

Figure 11. Conventional Channelizer as a Replica of
Analog Prototype: Down-Converters, Base-Band Filters,

and Resamplers

 An alternate implementation performs the channeli-
zation as a single merged process called a polyphase N-
Path filter bank [12] as shown in figure 12. The poly-
phase filter bank partition offers a number of significant
advantages relative to the set of individual down conver-
sion receivers. The primary advantage is reduced cost
due to major reduction in system resources required to
perform the multichannel processing.
 The first sector in the communications community to
make wide use of this form of the transmultiplxer was the
Bell System network that used this structure in the early

 6

1980’s to modulate and demodulate analog single side
band (SSB) FDM supergroup containing 60 4-kHz chan-
nels [13]. We now present a tutorial review to describe
how the conventional channelizer is converted to the
standard polyphase channelizers [14, 15]. This review
contains simple equations and informative block dia-
grams representing the sequence of modifications that
affect the transformation. We then extend the tutorial to
incorporate a number of variations to perform secondary
processing tasks along with the basic channelization
task.

fs

h (n)0

h (n)2

h (n)= h(r+ nM)r

Polyphase
 Partition

h (n)M-2

h (n)1

h (n)3

h (n)M-1

FDM TDM

M-PNT
 FFT

...
..
..

Figure 12. Polyphase Channelizer: Resampler, All-Pass

Partition, and FFT Phase Shifters

Transforming the Channelizer, First Step: The block
diagram of a single channel of a conventional channel-
izer is shown in figure 13. This structure performs the
standard operations of down conversion of the selected
channel with a complex heterodyne, low-pass filtering to
reduce bandwidth to the channel bandwidth, and down
sampling to a reduced rate commensurate with the re-
duced bandwidth. We mention that the down sampler is
commonly referred to as a decimator, a term which
means to destroy every tenth one. Since nothing is de-
stroyed, and nothing happens in tenths, we prefer, and
will continue to use the more descriptive name, down
sampler.

 DIGITAL
LOW-PASS M-to-1

 H(Z)

One for each Channel

e-j θkn

x(n) y(n,k) y(nM,k)

 Figure 13. k-th Channel of Conventional Channelizer

 The expression for y(n,k), the time series output from
the k-th channel, prior to resampling, is a simple convo-
lution as shown in eq-9.

∑
−

=

−−

−

−=

=
1

0

)()()(

)(*])([),(
N

r

rnj

nj

rhernx

nhenxkny

k

k

θ

θ

 (9)

The output data from the complex mixer is complex
hence is represented by two time series, I(n) and Q(n).
The filter with real impulse response h(n) is implemented
as two identical filters, each processing one of the quad-
rature time series. The convolution process is performed
by a simple digital filter that performs the multiply and
add operations between data samples and filter coeffi-
cients extracted from two sets of addressed memory
registers. One register set contains the data samples
while the other contains the coefficients that define the
filter impulse response. This structure is shown in figure
14.

x(n)
x(n+ 1)

x(n-1) x(n-2) x(n-3)

y(n)

x(n-N)
.....

....

Coefficient Registers

Data Registers

Figure 14. Conceptual Digital Filter: Coefficients and
Data Registers, Multipliers, and Adders

 We can rearrange the summation of eq-9 to obtain a
related summation reflecting the equivalency theorem
[16]. The equivalency theorem states that the operations
of down conversion followed by a low-pass filter are to-
tally equivalent to the operations of a band-pass filter
followed by a down conversion. The block diagram dem-
onstrating this relationship is shown in figure 15, while
the rearranged version of eq-9 is shown in eq-10. Note
here, that the up-converted filter, h(n) exp(jθkn), is com-
plex and as such its spectrum resides only on the posi-
tive frequency axis without a negative frequency image.
This is not a common structure for an analog prototype
because of the difficulty of forming a pair of analog quad-
rature filters exhibiting a 90-degree phase difference
across the filter bandwidth. The closest equivalent struc-
ture in the analog world is the filter pair used in image-
reject mixers.
 Applying the transformation suggested by the
equivalency theorem to an analog prototype system
does not make sense since it doubles the required

 7

hardware. We would have to replace a complex scalar
heterodyne (two mixers) and a pair of low-pass filters
with a pair of band-pass filters, containing twice the
number of reactive components, and a full complex het-
erodyne (four mixers). If it makes no sense to use this
relationship in the analog domain, why does it make
sense in the digital world? The answer is found in the
fact that we define a digital filter as a set of weights
stored in coefficient memory. Thus, in the digital world,

 Digital
Band-Pass M-to-1

One for each Channel

e-j θkn

H(Ze)
-jθk

x(n) y(n,k) y(nM,k)

Figure 15. Band-Pass Filter, k-th Channel of Channelizer

kk

kk

k

jr
N

r

jn

jrjn
N

r

N

r

rnj

erhrnxe

erhernx

rhernxkny

θθ

θθ

θ

)()(

)()(

)()(),(

1

0

1

0

1

0

)(

∑

∑

∑

−

=

−

−
−

=

−

=

−−

−=

−=

−=

 (10)

we incur no cost in replacing the pair of low pass filters
h(n) required in the first option with the pair of band pass
filters h(n) cos(nθk) and h(n) sin(nθk) required for the
second option. We accomplish this task by a simple
download to the coefficient memory. The filter structures
corresponding to the two sides of the equivalency theo-
rem are shown in figure 16. Note the input signal inter-
acts with the complex sinusoid as a product at the filter
input or as a convolution in the filter weights.

cos(n)θk cos(n)θk

cos(n)θk

-sin(n)θk sin(n)θk

sin(n)θk

h(n) h(n)

h(n) h(n)

x(n) x(n)
y(n) y(n)

Figure 16. Block Diagrams Illustrating Equivalency Be-
tween Operations of Heterodyne and Baseband Filter

With Band-Pass Filter and Heterodyne

 We still have to address the matter of the full com-
plex heterodyne required for the down conversion at the

filter output rather than at the filter input. Examining fig-
ure 16, we note that following the output down conver-
sion, we perform a sample rate reduction by retaining
only one sample in every M-samples. Recognizing that
there is no need to down convert the samples we dis-
card in the down sample operation, we choose to down
sample only the retained samples. This is shown in fig-
ure 17.
 We note in figure 17, that when we bring the down
converter to the low data rate side of the resampler, we
are in fact also down sampling the time series of the
complex sinusoid. The rotation rate of the sampled com-
plex sinusoid is θ k and Mθ k radians per sample at the
input and output respectively of the M-to-1 resampler.

 Digital
Band-Pass M-to-1

One for each Channel

e-j Mθkn

H(Ze)
-jθk

x(n) y(nM,k)

Figure 17. Down Sampled Down Converter,
Band-Pass k-th Channel

This change in rotation rate is an aliasing affect, a sinu-
soid at one frequency or phase slope, appears at an-
other phase slope when resampled. We now invoke a
constraint on the sampled data center frequency of the
down converted channel. We choose center frequencies
θ k which will alias to DC (zero frequency) as a result of
the down sampling to Mθ k. This condition is assured if
Mθ k is congruent to 2π, which occurs when Mθ k = k 2π,
or more specifically, when θ k = k 2π/M. The modification
to figure 17 to reflect this provision is seen in figure 18.
The constraint, that the center frequencies be integer
multiples of the output sample rate assures aliasing to
base band by the sample rate change. When a channel
aliases to base band by the resampling operation the
resampled related heterodyne defaults to a unity-valued
scalar, which consequently is removed from the signal-
processing path. Frequency offsets of the channel center
frequencies, due to oscillator drift or Doppler effects, are
removed after the down conversion by a baseband
phase locked loop (PLL) controlled mixer. This base-
band mixer operates at the output sample rate rather
than at the input sample rate for a conventional down
converter. We consider this required final mixing opera-
tion a post conversion task and allocate it to the next
processing block.
 The operations invoked by applying the equivalency
theorem to the down conversion process guided us to
the following sequence of maneuvers: i) slide the input
heterodyne through the low pass filters to their outputs,

 8

 Digital
Band-Pass M-to-1

One for each Channel

H(Ze)
-j k

x(n) y(nM,k)

2π
M

Figure 18. Alias to Base Band, Down Sampled Down
Converter, Band-Pass k-th Channel

ii) doing so converts the low pass filters to a complex
band pass filter, iii) slide the output heterodyne to the
downside of the down sampler, iv) doing so aliases the
center frequency of the oscillator, v) restrict the center
frequency of the band pass to be a multiple of the output
sample rate, vi) doing so assures alias of the selected
pass band to base band by the resampling operation,
and finally, vii) discard the now unnecessary heterodyne.
The spectral effect of these operations is shown in figure
19. The savings realized by this form of the down con-
version is due to the fact we no longer require a quadra-
ture oscillator nor the pair of input mixers to effect the
frequency translation.

......

fs

fsfs

M

MM

f

f

f

f

Fk

Fk

Hk

Specta, Input Signal

Specta, Complex Passband Filter

Specta, Bandpass Filtered Output Signal

Specta, Downsampled Output Signal

............

Figure 19. Spectral Description of Down Conversion Re-

alized by a Complex Band Pass Filter at a Multiple of
Output Sample Rate, Aliased to Baseband by Output

Resampling

Transforming the Channelizer, Second Step: Examin-
ing figure 18, we note that the current configuration of
the single channel down converter involves a band pass
filtering operation followed by a down sampling of the
filtered data to alias the output spectrum to baseband.
Following the idea developed in the previous section that
led us to down-convert only those samples retained by
the down sampler, we similarly conclude that there is no
need to compute the output samples from the pass band
filter that will be discarded by the down sampler. We now
interchange the operations of filter and down sample
with the operations of down sample and filter. The proc-
ess that accomplishes this interchange is known as the
Noble Identity [17], which we now review.
 The noble identity is compactly presented in figure
20 which we describe with similar conciseness by “The
output from a filter H(ZM) followed by an M-to-1 down
sampler is identical to an M-to-1 down sampler followed
by the filter H(Z)”. The ZM in the filter impulse response
tell us that the coefficients in the filter are separated M-
samples rather than the more conventional one sample
delay between coefficients in the filter H(Z). We must
take care to properly interpret the operation of the M-to-1
down sampler. The interpretation is that the M-to1 down
sampled time series from a filter processing every M-th
input sample presents the same output by first down
sampling the input by M-to-1 to discard the samples not
used by the filter to compute the retained output samples
and then operating the filter on the retained input sam-
ples. The noble identity works because M-samples of
delay at the input clock rate is the same interval as one-
sample delay at the output clock rate.

H(Z) H(Z)M

M-to-1 M-to-1

x(n) x(n)y(n) y(nM) y(nM)

Figure 20. Noble Identity: A Filter Processing Every M-th
Input Sample Followed by an Output M-to-1 Down Sampler is
the same as an Input M-to-1 Down Sampler Followed by a
Filter Processing Every M-th Input Sample.

 We might ask, “Under what condition does a filter
manage to operate on every M-th input sample?” We
answer this query by rearranging the description of the
filter to establish this condition so that we can invoke the
noble identity. This rearrangement starts with an initial
partition of the filter into M-parallel filter paths. The Z-
transform description of this partition is presented in
equations 11 through 14, which we interpret in figures 21
through 23. For ease of notation, we first examine the
base-band version of the noble identity and then trivially
extend it to the pass band version.

 9

)1(3

21

1

0

)1()3(
)2()1()0(

)()(

−−−

−−

−

=

−

−++

+++=

= ∑

N

N

n

n

ZNhZh
ZhZhh

ZnhZH

L

 (11)

 Anticipating the M-to-1 resampling, we partition the
sum shown in eq-11 to a sum of sums as shown in eq-
12. This partition maps a one-dimensional array of
weights (and index markers Z-n) to a two dimensional
array. This mapping is sometimes called lexicographic,
for natural order, a mapping that occurs in the Cooley-
Tukey fast Fourier transform. In this mapping we load an
array by columns but process the array by rows. In our
example, the partition forms columns of length M con-
taining M successive terms in the original sum, and con-
tinues to form adjacent M-length columns till we account
for all the elements of the original one-dimensional array.

L

MMMMMM

L

L

L

L

+++

+++

+++

+++

+++=

−−−−−−

+−+−−

+−+−−

+−+−−

+−−

−−−

++

++

++

++

)13()12()1(

)32()3(3

)22()2(2

)12()1(1

)02(

)()()(

)()()3(
)()()2(

)()()1(
)()()0()(

13121

323

222

121

020

MMM

MM

MM

MM

MM

ZhZhZh

ZhZhZh
ZhZhZh

ZhZhZh
ZhZhhZH

MMM

MM

MM

MM

MM

 (12)

 We note that the first row of the two dimensional ar-
ray is a polynomial in ZM, which we will denote H0(ZM) a
notation to be interpreted as an addressing scheme to
start at index 0 and increment in stride of length M. The
second row of the same array, while not a polynomial in
ZM, is made into one by factoring the common Z-1 term
and then identifying this row as Z-1 H1(ZM). It is easy to
see that each row of eq-12 can be described as Z-r
Hr(ZM) so that eq-12 can be re-written in a compact form
as shown in eq-13.

)(

)(

)()()(

)1(
)1(

2
2

1
1

0

M
M

M

M

MM

ZHZ

ZHZ

ZHZZHZH

−
−−

−

−

++

++=

LL (13)

We rewrite eq-13 in the traditional summation form as
shown in eq-14, which describes the original polynomial
as a sum of delayed polynomials in ZM.
 The block diagram reflecting this M-path partition of
a resampled digital filter is shown in figure 21. The out-
put of the filter is the resampled sum of the output of the
M separate filter stages along the M-paths. We pull the
resampler through the output summation element and

∑ ∑

∑
−

=

−

=

−−

−

=

−

+=

=

1

0

1)/(

0

1

0

)(

)()(

M

r

MN

n

nMr

M

r

M
r

r

ZnMrhZ

ZHZZH

 (14)

down sample the separate outputs, only performing the
output sum for the retained output sample points. With
the resamplers at the output of each filter, which oper-
ates on every M-th input sample, we are prepared to
invoke the noble identity and pull the resampler to the
input side of each filter stage. This is shown in figure 22.
The input resamplers operate synchronously, all closing
at the same clock cycle. When the switches close, the
signal delivered to the filter on the top path is the current
input sample. The signal delivered to the filter one path
down is the content of the one stage delay line, which of
course is the previous input sample. Similarly, as we
traverse the successive paths of the M-path partition, we
find upon switch closure, that the k-th path receives a
data sample delivered k-samples ago. We conclude that
the interaction of the delay lines in each path with the set
of synchronous switches can be likened to an input
commutator that delivers successive samples to succes-
sive legs of the M-path filter. This interpretation is shown
in figure 23.

H (Z)

H (Z)

H (Z)

H (Z)

M

M

M

M

0

1

2

M-1

Z

Z

Z

M-to-1

....
..

....
..

Figure 21. M-Path Partition of Prototype Low-Pass Filter

with Output Resampler

We now complete the final steps of the transform that
changes a standard mixer down converter to a resam-
pling M-Path down converter. We note and apply the

 10

frequency translation property of the Z-Transform [18].
This property is illustrated and stated in eq-15. Interpret-
ing the relationship presented in eq-15, we note that if
h(n), the impulse response of a base band filter, has a Z-
transform H(Z), then the sequence h(n)e+jθn, the impulse
response of a pass band filter, has a Z-transform H(Z e-

jθn). Simply stated, we can convert a low pass filter to a

H (Z)

H (Z)

H (Z)

H (Z)

0

1

2

M-1

Z

Z

Z

M-to-1

M-to-1

M-to-1

M-to-1
....

..
....

..

Figure 22. M-Path Partition of Prototype Low-Pass Filter

with Input Resamplers

H (Z)

H (Z)

H (Z)

H (Z)

0

1

2

M-1

....
..

Figure 23. M-Path Partition of Prototype Low-Pass Filter
with Input Path Delays and M-to-1 Resamplers Replaced

by Input Commutator

band pass filter by associating the complex heterodyne
terms of the modulation process either with the filter
weights or with the delay elements storing the filter
weights.

∑
−

=

−

−−

−−

=

−+

+++=

1

0

)1(

21

)(

)1(
)2()1()0()(if

N

n

n

N

Znh

ZNn
ZhZhhZH L

)(H(Z)G(Z)

then

])[(

])[1(
])[2(])[1()0(

)1(
)2()1()0()(

and

j-eZ

1

0

)1(

21

)1()1(

221

ZeH

Zenh

ZeNh
ZehZehh

ZeNh
ZehZehhZG

j
Z

N

n

nj

Nj

jj

NNj

jj

θ

θ

θ

θθ

θ

θθ

θ
−

=

−

=

−−

−−−

−−−−

−−−

−−

==

=

−+

+++=

−+

+++=

∑

L

L

 (15)

 We now apply this relationship to eq-10, or equiva-
lently to figure 23 by replacing each Z with Z e-jθ, or per-
haps more clearly, replacing each Z-1 with Z-1 ejθ, with
the phase term θ satisfying the congruency constraint of
the previous section, that θ=k(2π/M). Thus Z-1 is re-
placed with Z-1 ejk(2π/M), and Z-M is replaced with Z-M
ejkM(2π/M). By design, the kM-th multiple of 2π/M is a mul-
tiple of 2π for which the complex phase rotator term de-
faults to unity, or in our interpretation, aliases to base
band (DC). The default to unity of the complex phase
rotator occurs in each path of the M-path filter shown in
figure 24. The non-default complex phase angles are
attached to the delay elements on each of the M paths.
For these delays, the terms Z-r are replaced by the terms
Z-r ejkr(2π/M). The complex scalar ejkr(2π/M) attached to each
path of the M-path filter can be placed anywhere along
the path, and in anticipation of the next step, we choose
to place the complex scalar after the down sampled path
filter segments Hr(Z). This is shown in figure 24.
 The modification to the original partitioned Z-
Transform of eq-14 to reflect the added phase rotators of
figure 24 is shown in eq-16.

)()(
1

0

22

ZHeZZeH r

M

r

rk
M

jrk
M

j

∑
−

=

−−
=

ππ

 (16)

 11

 The computation of the time series obtained from the
output summation in figure 24 is shown in eq-17. Here
the argument nM reflects the down sampling operation
which increments through the time index in stride of
length M, delivering every M-th sample of the original
output series. The variable yr(nM) is the nM-th sample
from the filter segment in the r-th path, and y(nM,k) is the
nM-th time sample of the time series from the k-th center
frequency. Remember that the down converted center
frequencies located at integer multiples of the output

H (Z)

H (Z)

H (Z)

H (Z)

0

1

2

M-1

....
..

e Mj 1k2π

e Mj 0k2π

e Mj 2k2π

e Mj (M-1)k2π

Figure 24. Resampling M-Path Down Converter

sample frequency are the frequencies that alias to zero
frequency under the resampling operation. Note the out-
put y(nM,k) is computed as a phase coherent summation
of the M output series yr(nM). This phase coherent sum
is in fact, a DFT of the M-path outputs, which can be lik-
ened to beam-forming the output of the path filters.

 ∑
−

=

=
1

0

2

)(),(
M

r

rk
M

j

r enMyknMy
π

 (17)

 The beam-forming perspective offers interesting in-
sight to the operation of the resampled down-converter
system we have just examined. The reasoning proceeds
as follows: the commutator delivering consecutive sam-
ples to the M input ports of the M-path filter performs a
down sampling operation. Each port of the M-path filter
receives data at one-Mth of the input rate. The down
sampling causes the M-to-1 spectral folding, effectively
translating the M-multiples of the output sample rate to
base band. The alias terms in each path of the M-path
filter exhibit unique phase profiles due to their distinct
center frequencies and the time offsets of the different
down sampled time series delivered to each port. These

time offset are in fact the input delays shown if figure 22
and in eq-18. Each of the aliased center frequency ex-
periences a phase shift shown in eq-18, equal to the
product of its center frequency and the path time delay.

kr
Mf

rk
M
f

rTk
M
f
Tkr

s

s

s
s

rk

ππ

π

ωφ

212

2

),(

==

=

∆=

 (18)

 The phase shifters of the DFT perform phase coher-
ent summation, very much like that performed in narrow
band beam forming, extracting from the myriad of ali-
ased time series, the alias with the particular matching
phase profile. This phase sensitive summation aligns
contributions from the desired alias to realize the
processing gain of the coherent sum while the remaining
alias terms, which exhibit rotation rates corresponding to
the M roots of unity, are destructively canceled in the
summation.

The inputs to the M-path filter are not narrow band, and
phase shift alone is insufficient to effect the destructive
cancellation over the full bandwidth of the undesired
spectral contributions. Continuing with our beam-forming
perspective, to successfully separate wideband signals
with unique phase profiles due to the input commutator
delays, we must perform the equivalent of time-delay
beam forming. The M-path filters, obtained by M-to-1
down sampling of the prototype low-pass filter supply the
required time delays. The M-path filters are approxima-
tions to all-pass filters, exhibiting, over the channel
bandwidth, equal ripple approximation to unity gain and
the set of linear phase shifts that provide the time delays
required for the time delay beam forming task.
 The filter achieves this property by virtue of the way
we partitioned the low-pass prototype. Each of the M-
path filters, filter hr(n) for instance, with weights h(r+nM)
is formed by starting with an initial offset of “r” samples
and then incrementing by stride of M samples. The initial
offsets, unique to each path, are the source of the differ-
ent linear phase shift profiles. It is for this reason, the
different linear phase profiles, that the filter partition is
known as a polyphase filter. The phase shift and group
delay profiles for a 10-path filter are shown in figures 25
and 26. These figures are part of the output suite of fig-
ures formed by the MATLAB m-file filter_ten contained
in appendix-1 of the electronic version of this paper on
the CDROM accompanying this issue. This file synthe-
sizes a 10-stage polyphase channelizer and presents
input and output time series and spectra.

 12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-9

-8

-7

-6

-5

-4

-3

-2

-1

0
Spectral Phase Response of Ten Polyphase Filters

Normalized Frequency (f/fs)

P
ha

se
 S

hi
ft

(θ
/2
π)

Figure 25. Phase Profiles for Ten-Stages of Ten Path
Polyphase Partition

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-9

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

-7.4

-7.2

-7
Spectral Group Delay Response of Ten Polyphase Filters

Normalized Frequency (f/fs)

G
ro

up
 D

el
ay

 (d
θ/

d ω
) (

S
am

pl
es

)

Figure 26. Group Delay Profiles for Ten-Stages of Ten

Path Polyphase Partition

 A useful perspective is that the phase rotators follow-
ing the filters perform phase alignment of the band cen-
ter for each aliased spectral band while the polyphase
filters perform the required differential phase shift across
these same channel bandwidths. When the polyphase
filter is used to down convert and down sample a single
channel the phase rotators are implemented as external
complex products following each path filter. When a
small number of channels are being down converted and
down sampled, appropriate sets of phase rotators can
be applied to the filter stage outputs and summed to
form each channel output. We take a different approach
when the number of channels becomes sufficiently large.
Here sufficiently large means on the order of log2(N).
Since the phase rotators following the polyphase filter
stages are the same as the phase rotators of a DFT, we

can use the DFT to simultaneously apply the phase
shifters for all of the channels we wish to extract from the
aliased signal set. This is reminiscent of phased array
beam forming. For computational efficiency, the FFT
algorithm implements the DFT.
 It is useful to once again examine figure 12 in which
the polyphase filter and FFT was first presented as a
channelized receiver. Think of the many input arms of
the FFT as being coupled through a set of distributed
phase rotators to each output port of the FFT with each
output port accessed through a different vector of phase
slopes. Readers may recognize that the phase shifts
between input and output ports of the FFT are the same
as those forming the Butler Matrix used in phased array
beam forming [19, 20].
 At this point it is instructive to make a comparison of
the conventional mixer down converter and the resam-
pled polyphase down converter. The input to either
process can be real or complex. In the mixer down con-
verter model, a separate mixer pair and filter pair must
be assigned to each channel of the channelizer and that
these mixers all operate at the high input data rate, prior
to down sampling. By way of contrast, in the resampled
polyphase there is only one low pass filter required to
service all the channels of the channelizer, and this sin-
gle filter accommodates all the channels as co-
occupying alias contributors of the base band bandwidth.
This means that all the processing performed in the re-
sampled polyphase channelizer occurs at the low output
sample rate. When the input signal is real, there is an-
other significant difference between the two processes.
In the mixer down converter model the signal is made
complex by the input mixers as we enter the process,
which means that the low pass-filtering task requires two
filters, one for each of the quadrature components, while
in the resampling channelizer the signal is made com-
plex by the phase rotators as we leave the process, con-
sequently we require only one partitioned low pass filter
to process the real input signal.
 Before moving on to the next topic, let us summarize
what we have accomplished to this point. The commuta-
tor performs an input sample rate reduction by commu-
tating successive input samples to selected paths of the
M-path filter. Sample rate reduction occurring prior to
any signal processing causes spectral regions residing
at multiples of the output sample rate to alias to base-
band. This desired result allows us to replace the many
down-converters of a standard channelizer, implemented
with dual mixers, quadrature oscillators, and bandwidth
reducing filters, with a collection of trivial aliasing opera-
tions performed in a single portioned and resampled fil-
ter.
 The partitioned M-path filter performs the task of
aligning the time origins of the offset sampled data se-
quences delivered by the input commutator to a single
common output time origin. This is accomplished by the

 13

all-pass characteristics of the M-path filter sections that
apply the required differential time delay to the individual
input time series. The DFT performs the equivalent of a
beam forming operation; the coherent summation of the
time aligned signals at each output port with selected
phase profiles. The phase coherent summation of the
outputs of the M-path filters separate the various aliases
residing in each path by constructively summing the se-
lected aliased frequency components located in each
path, while simultaneously destructively canceling the
remaining aliased spectral components.
 This section of the presentation emphasized the
structure of an N-channel polyphase receiver. A similar
exposition can be mounted for the N-channel polyphase
transmitter. Rather than repeat the many steps that took
us to the polyphase structure from the more conven-
tional structure, we will merely comment that the trans-
mitter is the dual process of the receiver. The dual proc-
ess simply reverses all signal flow of the original proc-
ess. In the dual structure, we enter the N-channel proc-
ess at the FFT and leave the process by the polyphase
commutator. Reversing the signal flow results in a proc-
ess that up-samples and up-converts rather than one
that down converts and down samples. The two proc-
esses are shown in figure 27.

fs

fs

h (n)0

h (n)0

h (n)2

h (n)2

h (n)= h(r+ nM)r

h (n)= h(r+ nM)r

Polyphase
 Partition

Polyphase
 Partition

h (n)M-2

h (n)M-2

h (n)1

h (n)1

h (n)3

h (n)3

h (n)M-1

h (n)M-1

FDM

FDM

M-PNT
 FFT

M-PNT
 IFFT

.....

.....

y(nm,0)

y(n,0)

y(nm,1)

y(n,1)

y(nm,2)

y(n,2)

y(nm,N-1)

y(n,N-1)

ADC

DAC

Figure 27. N-Channel Transmitter and N-Channel Re-
ceiver: Dual Circuits Formed With Polyphase Filters,

FFT, and Commutator

Arbitrary Bandwidth, Spectral Spacing, and Output
Sample Rates: We now address the interaction and
coupling, or lack of coupling, between the parameters
that define the polyphase filter bank [21]. We observe
that the DFT performs the task of separating the chan-
nels after the polyphase filter so it is natural to conclude
that the transform size is locked to the number of chan-
nels and this is a correct assessment. We then note that
the filter bandwidth is determined by the weights of the
low pass prototype and that this bandwidth and spectral
shape is common to all the channels. We comment on
filter length later when we address total computation
complexity of the polyphase channelizer.
 In standard channelizer designs the bandwidth of the
prototype is specified in accord with the end use of the
channelizer outputs. For instance, when the channelizer
is used as a spectral analyzer, the channels may be de-
signed to have a specified pass band attenuation such
as –3 dB, or –1 dB or –0.1 dB at their crossover fre-
quency and have a specified stop band attenuation at
their adjacent center frequency. Overlap of adjacent
channel responses permits a narrow band input signal to
straddle one or more output channels, which is a com-
mon occurrence in the spectral analysis of signals with
arbitrary bandwidth and center frequencies. On the other
hand, when a channelizer is used to separate adjacent
communication channels which are characterized by
known center frequencies and known controlled, non-
overlapping bandwidths, the channelizer must preserve
separation of the channel outputs. Inadequate adjacent
channel separation results in adjacent channel interfer-
ence. Typical spectral responses for channel bandwidths
corresponding to the two scenarios just described are
shown in figure 28.
 The polyphase filter channelizer uses the input M-to-
1 resampling to alias the spectral terms residing at mul-
tiples of the output sample rate to base band. This
means that for the standard polyphase channelizer, the
output sample rate is the same as the channel spacing.
For the case of the spectral analyzer application operat-
ing at this sample rate permits aliasing of the band
edges into the down sampled pass band. When oper-
ated in this mode, the system is called a maximally
decimated filter bank. For the case of the communication
channelizer, operating at this rate satisfies the Nyquist
criterion, permitting the separation of the channels with
an output rate that avoids band edge aliasing. An ex-
ample of a spectrum that would require this mode of op-
eration is the Quadrature Amplitude Modulation (QAM)
channels of a digital cable system. Here the channels
are separated by 6-MHz centers and operate with 20%

 14

f

f

Crossover
 BW

Channel BWTransition BW

Transition BW

Channel Spacing

Channel Spacing

Channelizer for High Quality Spectrum Analyzer

Channelizer for High Quality FDM Receiver

Figure 28. Spectral Characteristics of Two Channelizers
with Same Channel Spacing One for Spectral Analysis

and one for FDM Channel Separation

excess bandwidth, square-root Nyquist shaped spectra,
at symbol rates of 5.0 MHz. The sampled data rate from
a cable channelizer would be 6.0 Mega samples/sec and
would satisfy the Nyquist sample criterion.
 Another example used on the upstream cable link
(subscriber to head end) is a set of channels operating
at 128 kHz symbol rate, with square root Nyquist spectra
having 50% excess bandwidth. The channels are sepa-
rated by 192 kHz, which matches the two-sided band-
width of the shaped channel. Here too, when operated at
192-kHz the sample rate, matched to the channel spac-
ing, satisfies the Nyquist sample rate criterion. Systems
that channelize and supply samples of the Nyquist
shaped spectra most often present the sampled data to
an interpolator to resample the time series from the col-
lected Nyquist rate to two times the symbol rate. For the
two example cited earlier, the 6 Ms/s, 5-Msymbol TV
signal would have to be resampled by 5/3 to obtain 10
Ms/s, and the 192 ks/s, 128 K-symbol reverse channel
signal would have to be resampled by 4/3 to obtain 256
ks/s. These are not difficult tasks and it is done quite
regularly in single channel receivers. This represents
significant computational burden if we are to perform this
interpolative resampling for every channel.
 The conventional way we use the M-path polyphase
filter bank is to deliver M-input samples to the M-paths
and then compute outputs from each channel at the rate
fs/M. The thought may occur to us, “Is it possible to op-
erate the polyphase filter bank in a manner that the out-
put rate is higher than one M-th of the input rate?” For
instance, can we operate the bank so that we deliver
M/2 inputs prior to computing an output sample rather
than delivering M input samples before computing an

output sample? Increasing the output sample rate of the
polyphase channel bank by a factor of two makes sub-
sequent interpolation tasks less expensive since the
spectra of the output signals would already be oversam-
pled by a factor two with increased spectral separation.
Operation in this mode would also permit channelization
of overlapped channels without aliasing of the spectral
transition bands. The alias free partition is handy in ap-
plications requiring perfect reconstruction of the original
time series from spectrally partitioned sub channels, a
requirement sometimes imposed in receivers used for
Electronic Warfare (EW) applications. For the record, a
polyphase filter bank can be operated with an output
sample rate any rational ratio times the input sample
rate. With minor modifications the filter can be operated
with totally arbitrary ratios between input and output
sample rates. This is true for the sample rate reduction
imbedded in a polyphase receiver as well as for the
sample rate increase embedded in a polyphase transmit-
ter.
 We first examine the task of increasing the output
sample rate from the polyphase filter bank from fs/M to 2
fs/M. We accomplish this by controlling the commutator
delivering input data samples to the polyphase stages.
We normally deliver M inputs to the M-stage filter by de-
livering successive input samples starting at port M-1
progressing up the stack to port 0 and by doing so de-
liver M inputs per output for an M-to-1 down sampling.
To obtain the desired (M/2)-to-1 down sampling, we de-
liver M/2 successive input samples starting at port (M/2)-
1 progressing up the stack to port 0. The M/2 addresses
to which the new M/2 input samples are delivered are
first vacated by their former contents, the M/2 previous
input samples. All the samples in the two-dimensional
filter undergo a serpentine shift of M/2 samples with the
M/2 samples in the bottom half of the first column sliding
into the M/2 top addresses of the second column while
the M/2 samples in the top half of the second column
slide into the M/2 addresses in the bottom half of the
second column and so on. This is equivalent to perform-
ing a linear shift through the prototype one-dimensional
filter prior to the polyphase partition. In reality, we do not
perform the serpentine shift but rather perform a swap of
two memory banks as shown in figure 29 for successive
sequences of length 32 being delivered to a filter bank
with 64 stages.
 We continue this discussion with comments on the
64-stage example. After each 32-point data sequence is
delivered to the partitioned 64-stage polyphase filter the
outputs of the 64-stages are computed and conditioned
for delivery to the 64-point FFT. The data shifting into the
polyphase filter stages causes a frequency dependent
phase shift of the form shown in eq-19. The time delay
due to shifting is nT where n is the number of samples,
and T is the interval between samples. The frequencies
of interest are integer multiple “k” of 1/M-th of the sample

 15

rate 2π/T. Substituting these terms in eq-19 and cancel-
ing terms, we obtain the frequency dependent phase
shift shown in eq-20. Here we see that for time shifts “n”
equal to multiples of M, the phase shift is a multiple of 2π
and contributes no offset to the spectra observed at the
output of the FFT. The M-sample time shift is the time

n n+ 32

n-1 n+ 31

n-1n-97

n-97n-129n-65

n-65n-33

n-33

n-32 n

n-32

n-96

n-96n-128

n-128n-180

n-64

n-64

n+ 31 n+ 63

Current Top Block

Former Top BlockA1

B1

B1

A1 A2

A2

B2

B2

B3

B3

Figure 29. Data Memory Loading for Successive 32-

Point Sequences in a 64-Stage Polyphase Filter

shift applied to the data in the normal use of the poly-
phase filter. Now suppose that the time shift is M/2 time
samples. When substituted in eq-20 we find a frequency
dependent phase shift of kπ from which we conclude that
odd indexed frequency terms experience a phase shift of
π radians for each successive N/2 shift of input data.

 ωωθ ⋅∆= t)((19)

ππωθ 221)(
M
nk

TM
knT =⋅= (20)

 This π radian phase shift is due to the fact that the
odd indexed frequencies alias to the half sample rate
when the input signal is down sampled by M/2. We can
compensate for the alternating signs in successive out-
put samples by applying the appropriate phase correc-
tion to the spectral data as we extract successive time
samples from the odd-indexed frequency bins of the
FFT. The phase correction here is trivial, but for other
down sampling ratios, the residual phase correction

would require a complex multiply at each transform out-
put port. Alternatively, we can cancel the frequency de-
pendent phase shift by applying a circular time shift on
N/2 samples to the vector of samples prior to their pres-
entation to the FFT. As in the case of the serpentine shift
of the input data, the circular shift of the polyphase filter
output data is implemented as a data swap. This data
swap occurs on alternate input cycles and a simple two-
state machine determines for which input cycle the out-
put data swap is applied. This option is shown in figure
30.

0

0

0

0

31

31

31

31

32

32

32

32

63

63

63

63

STATE-0
SHIFT-0

STATE-1
SHIFT-32

64
PNT
FFT

64
PNT
FFT

 64
Stage
 Poly
Phase
 Filter

 64
Stage
 Poly
Phase
 Filter

Figure 30. Cyclic Shift of Input Data to FFT to Absorb
Phase Shift Due to Linear Time Shift of Data Through

Polyphase Filter

 We are now prepared to examine the process that
permits resampling of the polyphase filter bank by any
rational ratio. We first demonstrated the modification to
the standard polyphase structure to support N/2 down
sampling. The modifications involved a serpentine shift
of input memory and a circular shift of output memory
that are both implemented by data swaps.
 There are relatively few papers in the open literature
that describe arbitrary resampling embedded in the poly-
phase filter bank. Our group at SDSU had written an
application note in 1989 [3] that demonstrated how to
obtain arbitrary sample rates from the polyphase filter
bank by use of the commutator mechanism with serpen-
tine data shifts just described. An earlier contribution [22]
presented the technique for absorbing the phase shifts

 16

at the output of the FFT as circular shifts of the data vec-
tor at the input to the FFT. Numerous papers have been
written describing arbitrary resamplers for baseband in-
terpolators. We believe this paper is the first open litera-
ture description of the two merged techniques for poly-
phase channelizers. The technique is based on the ob-
servation that the commutator is the component in the
polyphase filter bank that effects and controls the re-
sampling, not the spacing between the adjacent chan-
nels. This is true even though it was the resampling
process that first guided us to select the channel spacing
so we could access the aliasing to baseband. As we just
demonstrated, there are two modifications to the poly-
phase-resampling filter required to obtain arbitrary re-
sampling. These modifications would normally lead to an
exercise in time varying reside index mapping of the two-
dimensional input data array. If we limit the presentation
to the index mapping process we would develop little
insight into the process and further would be bored to
tears. Instead we derive and illustrate the modifications
by examining a specific example and observe the proc-
ess develop.

Second Example Processing Task: Here we describe
a more general resampling channelizer and present the
process that guides us to the solution. The problem is
this: we have a signal containing 50 FDM channels
separated by 192 kHz centers containing symbols modu-
lated at 128 kHz by square-root Nyquist filters with 50%
excess bandwidth. Our task is to base-band channelize
all 50 channels and output data samples from each
channel at 256 ks/s, which is two samples per symbol.
We start by selecting a sample rate and transform size
matched to the channel spacing. We select a 64-point
FFT to span the 50 channels with the excess bandwidth
allocated to the analog anti-alias filter. Thus the sample
rate for the collected spectra is 64 times the 192 kHz
channel spacing or 12.288 MHz. These are complex
samples formed from either a base band block conver-
sion or a digital down conversion and resampling from a
digital IF, often centered at the quarter sample rate. The
desired output sample rate is 2 times 128 or 256 kHz.
The ratio between the input and output sample rates is
the resampling ratio, which is 12288/256 or 48-to-1.
Thus our task is to use the 64 point DFT to separate and
deliver 50 of the possible 64 channels spanned by the
sample rate, but to deliver one output sample for every
48 input samples. Figure 31 is a block diagram of the
original maximally decimated version of the 64-stage
polyphase channelizer and the modified form of the
same channelizer. The difference in the two systems
resides in the block inserted between the 64-stage poly-
phase filter and the 64-point FFT. Remarkably, the in-
serted block performs no computation but rather only
performs a set of scheduled circular buffers shifts. We

are about to develop and describe the operation of the
circular buffer stage and state machine scheduler.
 Our first task is to modify the input commutator to
support the 48-to-1 down sample rather than the stan-
dard 64-to-1 down sample. This is an almost trivial task.
We arrange for the modified resampling by keeping the
64-path filter but stripping 16-ports from the commutator.
The commutator for the standard 64-point polyphase
filter starts at port 63 and delivers 64 successive inputs
to ports 64, 63, 62, and so on through 0, the modified
commutator starts at port 47 and delivers 48 successive
inputs to ports 47, 46, 45, and so on through 0. Input
memory for the 64-path filter must be modified to support
this shortened commutator input schedule. The mapping
structure of the reindexing scheme is best seen in the
original, one-dimensional, prototype filter shown in figure
32 and then transferred to the two-dimensional poly-
phase partition.

x(n)

x(n)

64-to-1

48-to-1

 64-Path
PolyPhase
 Filter

 64-Path
PolyPhase
 Filter

 64-Point
 FFT

 64-Point
 FFT

Circular
 Buffer

Circular
 Buffer

6464 64 50

5064 646448

64 50

50

fs = 12,288in

fs = 12,288in

fs = fs /64= 192out in

fs = fs /48= 256out in

Input
Buffer

Transfer
 Buffer

Output
 Buffer

Output
 Buffer

Figure 31. Maximally Decimated Filter Bank Structure
and Modified Two-Sample-per-Symbol

Filter Bank Structure

 Figure 32 presents the memory content for a se-
quence of successive 48-point input data blocks pre-
sented to the 64-point partitioned prototype filter. In this
figure we have indicated the interval of 64-tap bounda-
ries that become the columns of the two-dimensional
array as well as the boundaries of successive 48-point
input blocks that are presented to the input array. Suc-
cessive input blocks start loading at address 47 and
work up to address 0. The beginning and end of this in-
terval are denoted by the tail and arrow respectively, of
the left most input interval in the filter array. As each new
48-point input array is delivered, the earlier arrays must
shift to the right. These shifting array blocks cross the
64-point column boundaries hence move to adjacent
columns in the equivalent two-dimensional partition. This
crossing can be visualized as a serpentine shift of data
in the two dimensional array, or equivalently as a circular
row buffer down shift of 48 rows in the poly phase mem-
ory with a simultaneous column buffer right shift of the
input data column. The operation of this circular buffer is
illustrated in figure 33, which indicates the indices of in-

 17

put data for two input cycles. Here we see that between
two successive input cycles the rows in the top one-
fourth of memory translates to the bottom fourth while
the bottom three-fourths of rows translates up one-fourth
of memory. We also see that the columns in the bottom
three-fourths shift to the right on column during the circu-
lar row translations. The next input array is loaded in the
left most column of this group of addresses.

1

1

1

1

2

2

2

3

34

Length 64 column of
 polyphase partition

Length 48 Input Array

data origin

FFT origin

FFT origin FFT origin

FFT origin FFT originFFT origin

data origin

data origin

Circular Shift

Circular Shift

Circular Shift

Figure 32. Memory Contents for Successive 48-Point
Input Data Blocks Into a 64-Point Prototype Pre-
Polyphase Partitioned Filter and FFT

 Returning to figure 32, the one-dimensional proto-
type, we note that every new data block shifts the input
data origin to the right by 48 samples. The vector
ŷ(r,48n) formed as the polyphase filter output from all 64
path filters is processed by the FFT to form the vector
Ŷ(k,48n) of channelized (index k) output time series (in-
dex 48n). On each successive call to the FFT, the origin
of the sinusoids in the FFT is reset to the beginning of
the input array. Since the origin of the input array shifts
to the right on successive inputs while the origin of the
FFT simultaneously resets to the beginning of the input
array, a precessing offset exists between the origins of
the polyphase filter and of the FFT. We align the origins,
removing the offsets, by performing a circular shift of the
vector ŷ(r,48n) prior to passing it to the FFT. Since the
offset is periodic and is a known function of the input

array index the circular offset of the vector can be
scheduled and controlled by a simple state machine.
Figure 33 shows the location of the two origins for four
successive 48-point input arrays and the amount of cir-
cular offset required to align the two prior to the FFT.
Note that the offset schedule repeats in four cycles, four
being the number of input intervals of length 48 that is a
multiple of 64.

n

n

n-1

n-1

n-65

n-65

n-81

n-81

n-49

n-49n-33

n-33n-17

n-17

n-16

n-16

n-80

n-80

n-96

n-96

n-64

n-64n-48

n-48n-32

n-32

n+ 15

n+ 15

n+ 16

n+ 16
n+ 31

n+ 31

n+ 32

n+ 32

n+ 48

n+ 64

n+ 80

n+ 47

n+ 47

n+ 63

n+ 79

n+ 95

 Deliver
 Next48
 Input
Samples

 Deliver
 Next-48
 Input
Samples

Figure 33. Memory Contents for Successive 48-Point
Input Data Blocks Into a 64-Point Polyphase Filter

 The cyclic shift for schedule for the array ŷ(r,48n)
prior to the FFT is shown in figure 34,

0 0 0 00

0

0

0

16 16 16 1616

16

16

16

15 15 15 1515

15

15

15

31 31 31 3131

31

31

31

47 47 47 4747

47

47

47

48 48 48 4848

48

48

4832 32 32 3232

32

32

32

64 64 64 6464

64

64

64

STATE-0
SHIFT-0

 STATE-1
SHIFT-16

 STATE-2
SHIFT-32

STATE-3
SHIFT-48

Figure 34 Cyclic Shift Schedule for Input Array to FFT

Appendix-II in the electronic version of this article con-
tain a MATLAB m-file that implements the 50-stage
polyphase channelizer described in this section. The
program plots the impulse response of the prototype low
pass filter and the frequency response at the input sam-
ple rate and the output sample rate. It then plots the
spectrum and the input signal formed as a sum of sinu-
soids distributed over the span of frequencies matching
the bandwidth of the channelizer. Finally a series of plots
are generated showing the time series from 60 of the

 18

channelizer outputs. Here we observe the transient of
the filtering process in the occupied and unoccupied
channels as well as the effect of filtering and aliasing
spectral translation of the occupied channels. The code
is well annotated and the reader is invited to modify the
input time series and probe the performance of the
channelizer with a variety of test signals.

Polyphase Computational Complexity: This section
compares the computational workload required to im-
plement a channelizer as a bank of conventional down
converters with that required to implement the polyphase
resampling approach. Here we call on the example of
the 50-channel channelizer to supply actual numbers.
We first determine the length of the finite impulse re-
sponse (FIR) prototype filter required to satisfy the filter
specifications. We note that the filter designed to operate
at its input rate (12288 MHz) has its specifications con-
trolled by its output rate (256 kHz). This is because the
filter must satisfy the Nyquist sampling criterion after
spectral folding as a result of the down sample opera-
tion. The length of any FIR filter is controlled by the ratio
of input sample rate to filter transition bandwidth and the
required out-of band attenuation as well as level of in-
band ripple. The specifications of the filter used in this
paper are listed in figure 35.

 Pass Band
BW= 192 kHz Transition

BW= 64 kHz
Spectral Replicate
 at Output Rate

0

0

96-96 128

6144-6144

-128 160-160 256-256

Filter Spectrum at Input Sample Rate (12288 MHz)

Filter Spectrum at Output Sample Rate (256 kHz)

Passband Ripple
 0.1 dB

Stopband Ripple
 60 dB

Figure 35. Spectral Characteristics of Prototype Filter at

Output and Input Sample Rates

 Standard design rules determine the filter length
from the filter specification and for those indicated in fig-
ure 35, the filter length was found to be 512 samples and
the Remez algorithm [23, 24] was used to supply the
filter impulse response. A side comment is called for
here. Filters designed by the standard Remez algorithm
exhibit constant level out-of-band side-lobe levels. The
spectra corresponding to these side-lobes folds back
into the filter pass band under the resampling operation
resulting in integrated side lobe levels considerably
above the designed attenuation level. Modifying the
penalty function of the Remez algorithm so that the side
lobes fall off at approximately 6-dB per octave reduces

the level of integrated side lobes. See, for instance, the
filter design package QED-2000 available from Momen-
tum Data Systems. An alternate scheme to control spec-
tral side lobe decay rate involves modifying the end
points of the filter impulse response to suppress the out-
lier samples responsible for the constant level spectral
side lobes. See, for instance, the MATLAB examples in
the appendices of the electronic version of this paper.
 An important consideration and perspective for filters
that have different input and output sample rates is the
ratio of filter length (with units of operations/output) to
resample ratio (with units of inputs/output) to obtain the
filter workload (with units of operations/input). A useful
comparison of two processes is the number of multiplies
and adds per input point. We count a multiply and add
with their requisite data and coefficient fetch cycles as a
single processor operation and use the shorthand nota-
tion of “ops” per input.
 A single channel of a standard down converter
channelizer requires one complex multiply per input
point for the input heterodyne and computes one com-
plex output from the pair of 512 tap filters after collecting
48 inputs from the heterodyne. The 4 real ops per input
for the mixer and the 2 (512/48) = 22 ops per input for
the filter result in a per channel workload of 26 ops per
input which occur at the input sample rate.
 The polyphase version of the down converter col-
lects 48 input samples from the input commutator, per-
forms 1024 ops in the pair of 512 tap filters and then
performs a 64-point FFT with its upper bound workload
of 2N log2(N) real ops. The total workload of 1024 ops
for the filter and 768 ops for the FFT results in 1792 ops
performed once per 48 inputs for an input workload of 38
real ops/input. The higher workload per input is the con-
sequence of forming 64 output channels in the FFT but
preserving only 50 of them.
 Now we must be careful: the workload per input
sample for the standard channelizer was found to be 26
ops, and for the polyphase channelizer was found to be
38 ops: where is the promised advantage? The advan-
tage is that the polyphase 38 ops per input built all 50
channels, and the standard down converter’s 26 ops per
input built only one channel and has to be repeated 50
times. Isn’t that impressive? Comparing numbers we see
that we should use the polyphase form even if we are
forming just a few output channels, because the poly-
phase down converter requires less computations than
even two standard down converters.
 On a final note, when we compare hardware re-
sources, we observe that the standard channelizer must
build and apply 50 complex sinusoids as input hetero-
dynes to the input data at the high input sample rate and
further must store the 50 sets of down converted data for
the filtering operations. On the other hand, the poly-
phase filter bank only stores one set of input data be-
cause the complex phase rotators are applied after the

 19

filter rather than before and the phase rotators are ap-
plied at the filter output rate as opposed to the filter input
rate.

Applications: The polyphase filter structure we have
just reviewed and demonstrated can absorb a number of
different system specifications. We now discuss some of
the options. When the FDM signal is a collection of inde-
pendent signals, as might occur in a multiple access ap-
plication, the many signals do not share a common time
reference or a common carrier frequency reference. The
channels likely differ in small carrier and timing offsets
that must be resolved in subsequent modem processing.
For this situation it is appropriate for the channelizer to
only perform the standard down conversion, bandwidth
reduction, and sample rate reduction. For this application
the filter passes the selected channel bandwidths with-
out further spectral modification. This form of multiple
channelization is also appropriate for analog modulation
such as the 30 kHz narrow-band FM channels found in
analog wireless Advanced Mobile Phone Service
(AMPS), or the old standby SSB super-group.
 In another application, the multiple channels are
tightly coupled with negligible frequency offset and only
differ in local time base for the modulation. For this case
we can require the polyphase filter bank to perform the
functions of the matched filter. The filter passes the se-
lected channel bandwidths while performing the spectral
shaping required of the matched filter. Since the data is
formed at 2-samples per symbol, subsequent processing
only has to align the phase of each channel and interpo-
late to the correct timing phase of the complex envelope.
We note that the timing interpolation process requires
significantly fewer resources than does the simultaneous
interpolation matched filter and timing task.
 In yet a third application, the multiple channels share
a common clock and carrier reference hence are fully
synchronous and exhibit negligible frequency offset. For
this case we can ask the polyphase filter bank to perform
the functions of the matched filter and to participate in
timing recovery [25, 26]. Since in the example cited, we
are down sampling by a factor of 48-to-1 there are 48
different contenders for the arbitrary origin of the process
task. We can have the timing recovery loop advance or
retard the start of the vector load of the polyphase filter.
Using the processing origin to shift the sample time rela-
tive to the underlying modulation epochs offers fine grain
time offsets equal to 1% of symbol interval without the
need for additional interpolation.
 The example we used to demonstrate the polyphase
resampling channelizer implemented a 1/48 resampling
in a 64-stage channelizer. Any ratio of small integers can
be implemented using variations of the technique we
have presented. Also the number of polyphase filter
stages in a multi-channel receiver does not have to be
large to warrant the application of the process described

here. For instance, we have designed a number of poly-
phase resampling structures for 3rd generation (3G) [27]
wireless applications that employ from three to eleven
channels, using 5-point and 15-point transforms. These
applications have required sample rate changes from
3.84 MHz to 6.144 MHz and to 15.36 MHz requiring ra-
tios of 3-to-5 and of 2-to-5.
 In a fashion similar to the process we have pre-
sented here to design down-sampling polyphase re-
ceiver channelizers we can also design polyphase up-
sampling channelized transmitters. In fact when we de-
sign polyphase receivers, we are often obliged to design
polyphase transmitters to test the receivers. An unex-
pected result discovered when we designed the trans-
mitters for a given receiver is that they are not each
other’s duals because they are, in fact, not performing
the inverse operators. For instance, in the receiver ex-
ample we developed here, we formed a 48-to-1 down
sampler in a 64-point DFT, which is a ratio of 3/4. The
modulator on the other hand forms channels at 128 kHz
symbol rate at a common sample rate of 64 times 192
kHz, an up sample of 96 in the 64-point DFT, which is a
ratio of 2/3.
 Finally, we note that there are filter structures [28]
that permit the substitution of recursive polyphase filters
for the non-recursive filter we have examined in this pa-
per. The recursive filter options offer a reduction in work-
load by a factor of 3 to 6 and are available with both non-
uniform phases and an equal-ripple approximation to
linear phase. A minor drawback here is that the recur-
sion in the filter prohibits computation pipeline delay,
which limits the maximum output sample rate to the
range of 200 to 400 MHz.

Conclusions: We have presented a description of the
process by which a multichannel polyphase filter bank
can simultaneously perform the uncoupled tasks of down
conversion, bandwidth limiting, and sample rate change.
We included a tutorial derivation of the polyphase filter
bank as a sequence of transformations that rearrange
the operations of mixing, filtering and resampling to ob-
tain remarkably efficient processing structures. The se-
quence of transformations included application of the
equivalency theorem, alias based spectral translation,
sometimes referred to as IF sampling and of the noble
identity. We also demonstrated that the ratio of input
sample rate to output sample rate could differ from the
conventional resampling ratio, the number of stages in
the polyphase partition. The modification to the conven-
tional polyphase channelizer required the insertion of
circular buffers between the input commutator and the
polyphase filter and the insertion of a second circular
buffer between the output of the polyphase filter and the
FFT phase rotator. A number of excellent tutorials [29,
30, 31, 32] are available in the literature that present
aspects of some of the material presented here from a

 20

number of different perspectives. Readers may find
value in examining other author’s perspectives after be-
ing exposed to ours.
 We examined a specific example of a polyphase re-
sampling channelizer to better illustrate the processes
required to obtain arbitrary resampling in the filter bank.
Comments on variations to the modified polyphase
structure were included to give the reader a sense of the
wide range of applicability of this process. Finally we
compared the workload of a standard mixer based down
converter filter bank with that of the polyphase resam-
pling form. We invite readers to e-mail requests to the
author for the MATLAB code that implements the 10-
channel and the 50-channel channelizer described in
this paper. The electronic version of this paper has the
MATLAB files attached as appendices. A MATLAB script
for an animated version of the 10-channel channelizer is
also included in the appendices as is a 40-channel
modulator that performs a 1-to-56 up sampling with a
companion 40-channel demodulator that performs a 28-
to-1 down sampling embedded in the channelization
processes.

References:
1. N.J. Fliege, “Polyphase FFT Filter Bank for QAM

Data Transmission”, Proc. IEEE ISCAS’90,
pp.654-657, 1990.

2. R.E. Chrochier and L.R. Rabiner, “Multirate Digital
Signal Processing”, Prentice Hall, 1981.

3. f.j. harris, “On the Relationship Between Multirate
Polyphase FIR Filters and Windowed, Overlapped
FFT Processing”, Twenty-third Annual Asilomar
Conference on Signals and Computers, 1989.

4. Gordon Moore, “Cramming more Components onto
Integrated Circuits”, Electronics, Vol. 38, No. 8,
April 18 1965, also available at
http://www.intel.com/research/silicon/mooreslaw.htm

5. C. Dick, “The Platform FPGA: Enabling the Software
Radio”, SDR’02, 2002 Software Defined Radio
Technical Conference, 11, 12 November 2002,
San Diego, CA.

6. A.M. Badda and M. Donati, “The Software Defined
Radio Technique Applied to the RF Front-End for
Cellular Mobile Systems”, in Software Radio
Technologies and Services”, Editor Enrico Del Re,
Springer-Verlog 2001.

7. f.j. harris, “On Measuring the Gain and Phase Im-
balance and DC Offsets of Quadrature A-to-D
Converters with an Adaptive Canceling Filter”,
Twenty –first Annual Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove,
CA, 2-4 November 1987.

8. B. Sklar, “Digital Communications: Fundamentals
and Applications”, Second Edition, Prentice- Hall,
2002, Section 12.2.

9. J.G Proakis and D.G. Manolokis, “Digital Signal
Processing: Principles, Algorithms, and Applica-
tions”, Third Edition, 1996, Section 1.4.

10. D. Steinbrecher, “Broadband High Dynamic Range
A/D Conversion Limitations”, International Confer-
ence on Analogue to Digital and Digital to Ana-
logue Conversion, 17-19 September 1991, Swan-
sea, UK.

11. MAXIM Application Notes, “Defining and Testing
Dynamic Parameters in High Speed ADC. Part –I
and Part-II”, Feb. 2001 and Jan 2001.

 http://www.maxim-
ic.com/appnotes.cfm/appnote_number/728

 http://www.maxim-
ic.com/appnotes.cfm/appnote_number/729

12. M. Ribeyre, “Exploration of Transmultiplexers in
Telecommunication Networks”, IEEE Trans.
Commun., COM-30 July 1982, pp.1493-1497.

13. M. Bellanger and J. Daguet, “TDM-FDM Transmul-
tiplxer: Digital Polyphase and FFT”, IEEE Trans.
Commun., Vol. COM-22, Sept 1974, pp.1199-
1204.

14. f.j. harris, “A Fresh View of Digital Signal Processing
for Software Defined Radios, Part I”, International
Telemetry Conference (ITC), San Diego, CA, 21-
24 October 2002.

15. f.j. harris, “A Fresh View of Digital Signal Processing
for Software Defined Radios, Part II”, International
Telemetry Conference (ITC), San Diego, CA, 21-
24 October 2002.

16. J. Wozencraft and I.M. Jacobs, “Principles of Com-
munication Engineering”, John-Wiley, 1967, Sec-
tion 7.2.

17. P.P. Vaidyanathan, “Multirate Systems and Filter
Banks”, Prentice-Hall, 1993.

18. S.K. Mitra, “Digital Signal Processing: A Computer
Based Approach”, Second Edition, McGraw-Hill,
2001

19. J.L. Butler, in R.M. Foster (Ed), “Microwave Scan-
ning Antennas” Volume III, Chapter 3, Academic
Press, 1964.

20. Bruno Pattan, “Robust Modulation Methods & Smart
Antennas in Wireless Communications”, Prentice
Hall, 2000, Chapter 9, “The Butler Matrix”

21. f.j harris and C. Dick, “Performing Simultaneous Ar-
bitrary Spectral Translation and Sample Rate
Change in Polyphase Interpolating and Decimat-
ing Filters in Transmitters and Receivers”, 2002-
Software Defined Radio Technical Conference,
San Diego, CA, 11-12 November 2002.

22. D. Elliot, Editor, “Handbook of Digital Signal Proc-
essing: Engineering Applications”, Academic
Press, 1987, Chapter 8, “Time Domain Signal
Processing with the DFT”, pp 639-666.

23. J.H McClellan, T.W. Parks, and L.B. Rabiner, “A
Computer Program for Designing Optimum FIR

 21

Linear Phase Digital Filters”, IEEE Trans. On Au-
dio and Electroacoustics, Vol. AU-21, No. 6, pp.
506-526, December 1973.

24. MATLAB help menu for remez.m

25. f.j. harris and M. Rice, “Multirate Digital Filters for

Symbol Timing Synchronization in Software De-
fined Radios”, IEEE Journal on Selected Areas in
Communications, Vol. 19, pp. 2346-2357, Dec.
2001.

26. M, Rice and f.j harris, “Polyphase Filter Banks for
Symbol Synchronization in Sampled Data Receiv-
ers”, MILCOM-2002, Anaheim, CA, 7-10 October
2002

27. D. Metri, “Reconfigurable Receivers for 3-G Applica-
tions”, Master’s Thesis, San Diego State Univer-
sity, December 2002

28. M. Renfors and T. Saramaki, “Recursive N-th Band
Digital Filters, Parts I an II”, IEEE Trans. CAS,
Vol. 34, pp. 24-51, January 1987

29. P.P Vaidyanathan, “Multirate Digital Filters, Filter
Banks, Polyphase Networks and Applications: A
Tutorial”, Proc. IEEE, Vol. 78, pp 56-93, January
1990

30. R. D. Koilpillai, T.Q. Nguyen, and P.P. Vaidyana-
than, “Some Results in the Theory of Crosstalk
Free Transmultiplexer”, IEEE Trans. SP. Vol.39,
pp. 2174-2183, October 1991.

31. H. Scheuermann and H. Göckler, “A Comprehen-
sive Survey of Digital Transmultiplexing Methods”,
Proc. IEEE, Vol. 69, No. 11, November 1981, pp-
1419-1450.

32. K.C. Zangi and R.D Koilpillai, “Software Radio Is-
sues in Cellular Base Stations”, IEEE Journal on
Selected Areas in Communications, Vol. 17, No. 4,
April 1999, pp. 561-573

 22

Appendix-I: MATLAB Simulation of 10-Stage Polyphase Channelizers

function filter_ten(flag)
% filter_ten(flag) flag=0 for flat sidelobes, flag=1 for falling sidelobes

hh1=remez(169,[0 40 60 500]/500,[1 1 0 0],[1 100]);
frq=[0 40 60 99 100 149 150 199 200 249 250 299 300 349 350 399 400 449 450 500]/500;
gn= [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
pn= [1 100 140 180 220 260 300 340 380 420];

hh2=remez(169,frq,gn,pn);
hh=hh1;
if flag==1
 hh=hh2;
end

figure(1)
subplot(2,1,1)
plot(hh)
grid
title('Impulse Response: Prototype Filter')
xlabel('Normalized time nT/T')
ylabel('Amplitude')
subplot(2,1,2)
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(0.000001+abs(fft(hh,1024)))))
grid
axis([-500 500 -90 10])
title('Frequency Response: Prototype Filter')
xlabel('Frequency (kHz)')
ylabel('Log-Magnitude (dB)')
pause

x1=1*cos(2*pi*(0:2299)*10/1000);
x2=2+cos(2*pi*(0:2299)*15/1000);
x2=x2.*cos(2*pi*(0:2299)*100/1000);
x3=(3*cos(2*pi*(0:2299)*22/1000)+5*sin(2*pi*(0:2299)*6/1000));
x3=x3.*sin(2*pi*(0:2299)*300/1000);

xx=x1+x2+x3;
xx=[xx zeros(1,200)];

figure(2)
subplot(2,1,1)
plot(xx(1:200));
grid
title('Real Input Time Series')
xlabel('Normalized time nT/T')
ylabel('Amplitude')

subplot(2,1,2)
ww=kaiser(1024,8)';
ww=ww/sum(ww);
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(xx(1:1024).*ww,1024)))))
grid
axis([-500 500 -90 10])
title('Spectrum of Real Input Series')

 23

xlabel('Frequency (kHz)')
ylabel('Log-Magnitude (dB)')

pause
hold
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(0.00001+abs(fft(hh,1024)))),'r')
pause
gg1=hh.*exp(j*2*pi*(-84.5:84.5)*100/1000);
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg1,1024)))),'r--')
gg2=hh.*exp(j*2*pi*(-84.5:84.5)*200/1000);
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg2,1024)))),'r--')
gg3=hh.*exp(j*2*pi*(-84.5:84.5)*300/1000);
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg3,1024)))),'r--')
gg4=hh.*exp(j*2*pi*(-84.5:84.5)*400/1000);
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg4,1024)))),'r--')
hold
pause

hh2=reshape(hh,10,17);

reg=zeros(10,17);
n2=1;
for nn=1:10:2500

 reg(:,2:17)=reg(:,1:16);
 reg(:,1)=flipud(xx(nn:nn+9)');
 for mm=1:10
 vv(mm)=reg(mm,:)*hh2(mm,:)';
 end
 yy(:,n2)=fft(vv)';
 n2=n2+1;
end

figure(3)
subplot(5,2,1)
plot(real(yy(1,:)))
grid
title('Time Series, Channels 1-5')
rr=axis;
rr(2)=250;
axis(rr);
subplot(5,2,2)
ww=kaiser(200,8)';
ww=ww/sum(ww);
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(1,20:219).*ww,256)))))
axis([-50 50 -80 10])
grid
title('Spectra, Channels 1-5')

subplot(5,2,3)
plot(real(yy(2,:)))
grid
rr=axis;
rr(2)=250;
axis(rr);

 24

subplot(5,2,4)
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(2,20:219).*ww,256)))))
axis([-50 50 -80 10])
grid

subplot(5,2,5)
plot(real(yy(3,:)))
grid
rr=axis;
rr(2)=250;
axis(rr);

subplot(5,2,6)
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(3,20:219).*ww,256)))))
axis([-50 50 -80 10])
grid

subplot(5,2,7)
plot(real(yy(4,:)))
grid
rr=axis;
rr(2)=250;
axis(rr);

subplot(5,2,8)
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(4,20:219).*ww,256)))))
axis([-50 50 -80 10])
grid

subplot(5,2,9)
plot(real(yy(5,:)))
grid
rr=axis;
rr(2)=250;
axis(rr);

subplot(5,2,10)
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(5,20:219).*ww,256)))))
axis([-50 50 -80 10])
grid

pause
figure(4)
subplot(2,2,1)
plot(0,0)
hold
for mm=1:10
 plot(0:1/64:1-1/64,(10*abs(fft(hh2(mm,:),64))))
end
hold
grid
title('Spectral Magnitude Response of Ten Polyphase Filters')
xlabel('Normalized Frequency')
ylabel('Amplitude')
axis([0 0.5 0.0 1.2])

subplot(2,2,3)

 25

plot(0,0)
hold
for mm=1:10
 plot(0:1:16,0.5*mm+10*hh2(mm,:))
end
plot([7.55 8.45],[5.628 1.128],'r')
hold
grid
title('Impulse Response of Ten Polyphase Filters')
xlabel('Normalized Time')
axis([-1 17 -0.2 6])

subplot(2,2,2)
plot(0,0)
hold
for mm=1:10
 plot(0:1/64:1-1/64,unwrap((angle((fft(hh2(mm,:),64)))))/pi)
end
hold
grid
title('Spectral Phase Response of Ten Polyphase Filters')
axis([0 0.5 -9 0])
xlabel('Normalized Frequency (f/fs)')
ylabel('Phase Shift (\theta/2\pi)')

subplot(2,2,4)
plot(0,0)
hold
for mm=1:10
 vv=unwrap(angle(fftshift(fft(hh2(mm,:),64))))/(2*pi);
 vv2=64*filter([1 -1],1, vv);
 plot(0:1/64:1-1/64,fftshift(vv2))
end
hold
grid
title('Spectral Group Delay Response of Ten Polyphase Filters')
xlabel('Normalized Frequency (f/fs)')
ylabel('Group Delay (d\theta/d\omega) (Samples)')
%axis([0 0.5 -9 0])
axis([0 0.5 -9 -7])

% pause
% figure(5)
% plot(0,0)
% hold
% for mm=1:10
% plot(0:1/64:1-1/64,unwrap((angle((fft(hh2(mm,:),64)))))/pi)
% end
% hold
% grid
% title('Spectral Phase Response of Ten Polyphase Filters')
% axis([0 0.5 -9 0])
% xlabel('Normalized Frequency (f/fs)')
% ylabel('Phase Shift (\theta/2\pi)')
% figure(6)
% plot(0,0)

 26

% hold
% for mm=1:10
% vv=unwrap(angle(fftshift(fft(hh2(mm,:),64))))/(2*pi);
% vv2=64*filter([1 -1],1, vv);
% plot(0:1/64:1-1/64,fftshift(vv2))
% end
% hold
% grid
% title('Spectral Group Delay Response of Ten Polyphase Filters')
% axis([0 0.5 -9 -7])
% xlabel('Normalized Frequency (f/fs)')
% ylabel('Group Delay (d\theta/d\omega) (Samples)')
%
% gg=get(gca);
% set(gca,'gridlinestyle','-')

Appendix-II: MATLAB SIMULATION OF 50-CHANNEL CHANNELIZER

function polyphase_50a
% demonstration of resampling polyphase filter bank

% building filter
hh=remez(511,[0 96 160 192*32]/(192*32),[1 1 0 0],[1 13]);
hh(1)=hh(2)/4;
hh(2)=hh(2)/2;
hh(512)=hh(1);
hh(511)=hh(2);

% examine prototype filter
figure(1)
subplot(2,1,1)
plot(hh)
axis([-10 520 -0.005 0.022])
title(' Impulse Response, Prototype Filter’)
grid
subplot(2,1,2)
plot((-0.5:1/2048:.5-1/2048)*64,fftshift(20*log10(abs(fft(hh,2048)))),'r')
grid
axis([-32 32 -80 10])
xlabel('Normalized Frequency f/f_C_h_a_n_n_e_l')
ylabel('log magnitude (dB)')
title('Frequency Response, Prototype Filter')
pause

% zoom to passband and compare with spectral copies at output rate
hold
het1=exp(j*2*pi*(0:511)/48);
het2=exp(-j*2*pi*(0:511)/48);
plot((-0.5:1/2048:.5-1/2048)*64,fftshift(20*log10(abs(fft(hh.*het1,2048)))))
plot((-0.5:1/2048:.5-1/2048)*64,fftshift(20*log10(abs(fft(hh.*het2,2048)))))
hold
axis([-2 2 -80 10])
title('Frequency Response, Prototype and Replicates at Output Rate')
pause

 27

% building sample input signal: can replace with any other signal set
% channel 0 is empty.
ff=[1:25]+0.02;
xx=zeros(1,4848);
for rr=1:25
 xx=xx+exp(j*2*pi*(0:4847)*ff(rr)/64);
 xx=xx+exp(-j*2*pi*(0:4847)*ff(rr)/64);
end

% mapping one-dimensional prototype filter to two-dimensional filter
hh2=reshape(hh,64,8);

% defining two-dimensional array of commutated input samples
reg2=zeros(64,8);

% defining initial condition of 4-state state machine
state=1;

% filtering data

n_dat=1;
for nn=1:48:4800

% circularly roll and shift data array
temp=reg2(1:16,:);
reg2(1:48,2:8)=reg2(17:64,1:7);
reg2(49:64,:)=temp;

%load input data array
reg2(1:48,1)=xx(nn+47:-1:nn)';

% form inner products
for mm=1:64
 dd(mm)=reg2(mm,:)*hh2(mm,:)';
end

% circular shift output array dd
if state==1;
 state=2;
 dd_shift=dd;
elseif state==2;
 state=3;
 dd_shift=[dd(49:64) dd(1:48)];
elseif state==3;
 state=4;
 dd_shift=[dd(33:64) dd(1:32)];
elseif state==4;
 state=1;
 dd_shift=[dd(17:64) dd(1:16)];
end

% phase shift via fft

dd2(n_dat,:)=fftshift(fft(dd_shift));
n_dat=n_dat+1;
end

 28

% output 60 channelized time series
figure(2)
for kk=1:12
 subplot(3,4,kk)
 plot(real(dd2(:,3+kk)))
 ss=sprintf('time series:, channel %2i ', -28+kk);
 title(ss)
 grid
 axis([0 100 -1.1 1.1])
end
figure(3)
for kk=1:12
 subplot(3,4,kk)
 plot(real(dd2(:,15+kk)))
 ss=sprintf('time series:, channel %2i ', -17+kk);
 title(ss)
 grid
 axis([0 100 -1.1 1.1])
end
figure(4)
for kk=1:12
 subplot(3,4,kk)
 if kk==6
 plot(real(dd2(:,27+kk)),'r')
 else
 plot(real(dd2(:,27+kk)))
 end
 ss=sprintf('time series:, channel %2i ', -6+kk);
 title(ss)
 grid
 axis([0 100 -1.1 1.1])
end
figure(5)
for kk=1:12
 subplot(3,4,kk)
 plot(real(dd2(:,39+kk)))
 ss=sprintf('time series:, channel %2i ', 5+kk);
 title(ss)
 grid
 axis([0 100 -1.1 1.1])
end
figure(6)
for kk=1:12
 subplot(3,4,kk)
 plot(real(dd2(:,51+kk)))
 ss=sprintf('time series:, channel %2i ', 16+kk);
 title(ss)

 grid
 axis([0 100 -1.1 1.1])
end

 29

Appendix-III: MATLAB SIMULATION OF 40-CHANNEL CHANNELIZER

function receiver_40z;
% receiver_40z is a demo of a 40 channel receiver, demodulating 30 channels,
% of nominal symbol rate 20 MHz, separated by 28 MHz centers (1.4 times symbol rate)
% input sample rate is 40*28 = 1120 MHz.
% receiver performs a 40 point transform on the output of a 40-stage polyphase filter
% the polyphase filter operates at input rate but outputs at 2 samples/symbol or
% 40 MHz. The resampling rate is 1120/40 = 28-to-1, thus output from 40-channels are
% computed once for every 28 input samples. channelizer is not matched filter,
% prototype filter is 10% wider than two sided bandwidth of input signal to accommodate
% frequency uncertainty of separate channel centers.

%igo=0;
%while igo==0
% igo=1;
%chan=input('enter channel number (-15 to +14) -> ');
% if chan>14
% igo=0;
% end
% if chan<-15
% igo=0;
% end
%end

%if chan<15
% chan=chan+1;
%end
%if chan<0
%chan=chan+40;
%end

% signal generator section

hh_a=rcosine(1,112,'sqrt',0.4,6);
hh_b=hh_a(2:2:1345);
hh_b2=reshape(56*hh_b,56,12);
rr2=zeros(56*5,12);

xx1=2*floor(2*rand(28,100))-1;
xx1=xx1+j*(2*floor(2*rand(28,100))-1);
rr_a=zeros(1,40);

flag=0;
for nn=1:100
 %rr_a(10:29)=xx1(:,nn)';
 rr_a(1:14)=xx1(1:14,nn)';
 rr_a(27:40)=xx1(15:28,nn);
 rr_a(38)=0;
 rr_a(39)=0;

 %rr_a=fftshift(rr_a);
 rr_b=fft(rr_a);
 rr_b_ext=[rr_b rr_b rr_b rr_b rr_b rr_b rr_b];

 30

 rr2(:,2:12)=rr2(:,1:11);
 rr2(:,1)=rr_b_ext';

 for mm=1:56
 xx_d((nn-1)*56+mm)=rr2(mm+56*flag,:)*hh_b2(mm,:)';
 end

 flag=flag+1;
 if flag==5;
 flag=0;
 end

end
figure(1)

subplot(2,1,1)
plot(real(xx_d(1:800)));
grid
title('real part of composite time signal')
subplot(2,1,2)
ww=kaiser(4096,8)';
ww=ww/sum(ww);
fxx=fftshift(20*log10(abs(fft(xx_d(1:4096).*ww))));
plot((-0.5:1/4096:.5-1/4096)*40,fxx)
hold
plot((-51/4096:1/4096:51/4096)*40,fxx(2049-51:2049+51),'r')
hold
grid
axis([-20 20 -60 10])
title('Spectrum: composite time signal')
pause

%xx=exp(j*2*pi*(0:5600)*chan/40);
%xx=xx+exp(j*2*pi*(0:5600)*5.001/40);
%xx(1000:1500)=zeros(1,501);

xx=xx_d;

%receiver section

%hh=remez(319, [0 14 27 560]/560,[1 1 0 0]);
ff=[0 12 17 56 57 84 85 112 113 140 141 168 169 196 197 224 225 252 253 280 281 308 309
336 337 364 365 392 393 420 421 448 449 476 477 504 505 532 533 560]/560;
gg=[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
dd=[1 6 7 9 11 13 15 17 19 21 23
25 27 29 31 33 35 37 39 41];

hh=remez(599,ff,gg,dd);

hh2=reshape(hh,40,15);
rr=zeros(40,15);

tt=1;
flg=1;
for nn=1:28:5600-28

 31

 temp=rr(1:12,:);
 rr(1:28,2:15)=rr(13:40,1:14);
 rr(1:28,1)=flipud(xx((nn-1)+1:(nn-1)+28)');
 rr(29:40,:)=temp;

 for mm=1:40
 y(mm)=rr(mm,:)*hh2(mm,:)';
 end
 if flg==1
 r1=fftshift(fft(y));
 flg=2;
 elseif flg==2
 r1=fftshift(fft([y(29:40) y(1:28)]));
 flg=3;
 elseif flg==3
 r1=fftshift(fft([y(17:40) y(1:16)]));
 flg=4;
 elseif flg==4
 r1=fftshift(fft([y(5:40) y(1:4)]));
 flg=5;
 elseif flg==5
 r1=fftshift(fft([y(33:40) y(1:32)]));
 flg=6;
 elseif flg==6
 r1=fftshift(fft([y(21:40) y(1:20)]));
 flg=7;
 elseif flg==7
 r1=fftshift(fft([y(9:40) y(1:8)]));
 flg=8;
 elseif flg==8
 r1=fftshift(fft([y(37:40) y(1:36)]));
 flg=9;
 elseif flg==9
 r1=fftshift(fft([y(25:40) y(1:24)]));
 flg=10;
 elseif flg==10
 r1=fftshift(fft([y(13:40) y(1:12)]));
 flg=1;
end

 yy(:,tt)=r1';

 tt=tt+1;
end

figure(2)
for kk=1:30
 subplot(5,6,kk)
 if kk==16
 plot(real(yy(kk+5,:)),'r')
 else
 plot(real(yy(kk+5,:)))
 end

grid
axis([0 200 -10 10])
end

 32

figure(3)

ww=kaiser(199,7)';
ww=ww/sum(ww);
for kk=1:30
 subplot(5,6,kk)
 if kk==16
plot((-0.5:1/256:.5-1/256)*2,fftshift(20*log10(abs(fft(yy(kk+5,:).*ww,256)))),'r')
else
plot((-0.5:1/256:.5-1/256)*2,fftshift(20*log10(abs(fft(yy(kk+5,:).*ww,256)))))
end

grid
axis([-1 1 -60 10])
end
subplot(5,6,16)
hold
plot([-0.95 0.95 0.95 -0.95 -0.95],[-59 -59 9 9 -59],'r')
hold

%pause
%figure(4)
%subplot(2,2,1)
%plot(hh)
%grid

%title('prototype receiver filter')

%subplot(2,2,3)
%plot((-0.5:1/2048:.5-1/2048)*40,fftshift(20*log10(abs(fft(hh,2048)))));
%grid
%axis([-20 20 -80 10])
%title('spectrum: receiver filter')

%subplot(2,2,2)
%plot(hh_b)
%grid

%title('prototype transmitter filter')

%subplot(2,2,4)
%plot((-0.5:1/2048:.5-1/2048)*40,fftshift(20*log10(abs(fft(hh_b/sum(hh_b),2048)))));
%grid
%axis([-20 20 -80 10])
%title('spectrum: transmitter filter')

Appendix-IV: MATLAB ANIMATED SIMULATION OF 10-CHANNEL CHANNELIZER

(CALLS filter_ten_a_call IN-APPENDIX-V.)

 33

%filter_ten_a

% Animated spectra and time response of 10-stage polyphase filter bank.
% Can move single tone through filter bank via a slider control or by a scheduled sweep

clear all

freq=0.1;
 xx= exp(j*2*pi*(0:2499)*freq);

figure(1)
subplot(6,2,1)
d_in=zeros(1,100);
plot(0:99,real(d_in));
grid
axis([0 100 -1.1 1.1]);

subplot(6,2,3)
d_1=zeros(1,100);
plot(0:0.1:9.9,d_1);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,4)
d_2=zeros(1,100);
plot(0:0.1:9.9,d_2);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,5)
d_3=zeros(1,100);
plot(0:0.1:9.9,d_3);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,6)
d_4=zeros(1,100);
plot(0:0.1:9.9,d_4);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,7)
d_5=zeros(1,100);
plot(0:0.1:9.9,d_5);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,8)
d_6=zeros(1,100);
plot(0:0.1:9.9,d_6);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,9)
d_7=zeros(1,100);
plot(0:0.1:9.9,d_7);
grid

 34

axis([0 10 -1.1 1.1]);

subplot(6,2,10)
d_8=zeros(1,100);
plot(0:0.1:9.9,d_8);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,11)
d_9=zeros(1,100);
plot(0:0.1:9.9,d_9);
grid
axis([0 10 -1.1 1.1]);

subplot(6,2,12)
d_10=zeros(1,100);
plot(0:0.1:9.9,d_10);
grid
axis([0 10 -1.1 1.1]);

freq=0.1;
flag1=1;
% flag1=1 slider control, flag1=0 scheduled sweep
flag2=1;
% flag2=1 time display, flag2=0 frequency display

slider_1=uicontrol('style','slider','units','normalized','pos',[0.65 0.90 0.19
0.028],...
 'min',-0.4,'max',+0.4,'value',freq,...
 'callback',['freq=0.01*round(100*get(slider_1,''value''));',...
 'set(slider_1_cur,''string'',num2str(freq)),',...
 'set(gca,''view'',[0 0.5]),',...
 'filter_ten_a_call(freq,flag1,flag2)']);

slider_1_min=uicontrol('style','text','units','normalized','pos',[0.62 0.90 0.025
0.025],...
 'string', num2str(get(slider_1,'min')));

slider_1_max=uicontrol('style','text','units','normalized','pos',[0.84 0.90 0.025
0.025],...
 'string',num2str(get(slider_1,'max')));

slider_1_cur=uicontrol('style','text','units','normalized','pos',[0.78 0.87 0.055
0.025],...
 'string',num2str(0.01*round(100*get(slider_1,'value'))));

slider1_title=uicontrol('style','text','units','normalized','pos',[0.690 0.87 0.10
0.025],...
 'string','Center Frequency');

h30=uicontrol('style','pushbutton','string','SLIDER','units','normalized',...
 'position',[0.6 0.830 0.055
0.030],'callback',['flag1=1;','filter_ten_a_call(freq,flag1,flag2)']);
h40=uicontrol('style','pushbutton','string','SWEEP','units','normalized',...
 'position',[0.67 0.830 0.055
0.030],'callback',['flag1=0;','filter_ten_a_call(freq,flag1,flag2)']);

 35

h50=uicontrol('style','pushbutton','string','TIME','units','normalized',...
 'position',[0.74 0.830 0.055
0.030],'callback',['flag2=1;','filter_ten_a_call(freq,flag1,flag2)']);
h60=uicontrol('style','pushbutton','string','FREQ','units','normalized',...
 'position',[0.81 0.830 0.055
0.030],'callback',['flag2=0;','filter_ten_a_call(freq,flag1,flag2)']);

Appendix-V: MATLAB ANIMATED SIMULATION OF 10-CHANNEL CHANNELIZER

(CALLED BY filter_ten_a IN APPEDIX-IV.)

function filter_ten_a_call(freq,flag1,flag2)
% called by filter_ten_a

if flag1==1
 n_dat=1200;
xx= exp(j*2*pi*(0:n_dat-1)*freq);
ww1=kaiser(100,6)';
ww1=ww1/sum(ww1);
nn_dat=100;

else
 n_dat=10000;
 frq=[0:1/2500:1 1-1/2500:-1/2500:-1 -1+1/2500:1/2500:-1/2500];
 phs=filter([1 0],[1 -1],frq);
 xx=exp(j*2*pi*phs*0.45);

ww1=kaiser(100,6)';
ww1=ww1/sum(ww1);
nn_dat=12;
end

if flag2==1

 subplot(6,2,1)
 plt0=plot(0:99,real(xx(1:100)),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 100 -1.1 1.1])
 title('Input Time Series')

 mm=0;
 txt=text(105,0.0,['Sample # ',num2str(mm,3)]);

 subplot(6,2,3)
 plt1=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(-1)')
 text(10.2, -0.3, '-0.15 -0.05')

 subplot(6,2,4)
 plt2=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid

 36

 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(0)')
 text(10.2, -0.3, '-0.05 +0.05')

 subplot(6,2,5)
 plt3=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(-2)')
 text(10.2, -0.3, '-0.25 -0.15')

 subplot(6,2,6)
 plt4=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(+1)')
 text(10.2, -0.3, '+0.05 +0.15')

 subplot(6,2,7)
 plt5=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(-3)')
 text(10.2, -0.3, '-0.35 -0.25')

 subplot(6,2,8)
 plt6=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(+2)')
 text(10.2, -0.3, '+0.15 +0.25')

 subplot(6,2,9)
 plt7=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(-4)')
 text(10.2, -0.3, '-0.45 -0.35')

 subplot(6,2,10)
 plt8=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(+3)')
 text(10.2, -0.3, '+0.25 +0.35')

 subplot(6,2,11)
 plt9=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])
 text(10.6, 0.3, 'bin(-5)')
 text(10.2, -0.3, '-0.45 +0.45')

 subplot(6,2,12)
 plt10=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0 10 -1.1 1.1])

 37

 text(10.6, 0.3, 'bin(+4)')
 text(10.2, -0.3, '+0.35 +0.45')
else
 ww=kaiser(100,6)';
 ww=ww/sum(ww);
 hp=remez(99,[0 40 60 500]/500,[1 1 0 0],[1 1]);

 fhp=fftshift(abs(fft(hp,100)));
 subplot(6,2,1)
 plt0=plot(-0.5:1/100:0.5-
1/100,fftshift(abs(fft(xx(1:100).*ww))),'linewidth',3,'erasemode','xor');

 hold on
 plot(-0.5:1/100:.5-1/100,fhp,'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(11:100) fhp(1:10)],'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(21:100) fhp(1:20)],'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(31:100) fhp(1:30)],'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(41:100) fhp(1:40)],'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(61:100) fhp(1:60)],'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(71:100) fhp(1:70)],'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(81:100) fhp(1:80)],'r--')
 plot(-0.5:1/100:.5-1/100,[fhp(91:100) fhp(1:90)],'r--')
 cc=get(gca,'children');
 set(cc,'linewidth',1.5)
 hold off
 grid
 axis([-0.5 0.5 0 1.1])
 title('Input Spectrum and Channel Bandwidths')
 mm=0;
 txt=text(0.55,0.5,['Sample # ',num2str(mm,3)]);

 subplot(6,2,3)
 plt1=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([-0.1501 -0.0499 0 1.1])
 text(-0.043, 0.65, 'bin(-1)')
 text(-0.048, 0.35, '-0.15 -0.05')

 subplot(6,2,4)
 plt2=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([-0.05 0.05 0 1.1])
 text(0.057, 0.65, 'bin(0)')
 text(0.052, 0.35, '-0.05 +0.05')

 subplot(6,2,5)
 plt3=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([-0.25 -0.15 0 1.1])
 text(-0.143, 0.65, 'bin(-2)')
 text(-0.148, 0.35, '-0.25 -0.15')

 subplot(6,2,6)

 38

 plt4=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0.05 0.15 0 1.1])
 text(0.157, 0.65, 'bin(+1)')
 text(0.152, 0.35, '+0.05 +0.15')

 subplot(6,2,7)
 plt5=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([-0.3501 -0.2499 0 1.1])
 text(-0.243, 0.65, 'bin(-3)')
 text(-0.248, 0.35, '-0.35 -0.25')

 subplot(6,2,8)
 plt6=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0.15 0.25 0 1.1])
 text(0.257, 0.65, 'bin(+2)')
 text(0.252, 0.35, '+0.15 +0.25')

 subplot(6,2,9)
 plt7=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([-0.45 -0.35 0 1.1])
 text(-0.343, 0.65, 'bin(-4)')
 text(-0.348, 0.35, '-0.45 -0.35')

 subplot(6,2,10)
 plt8=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0.25 0.35 0 1.1])
 text(0.357, 0.65, 'bin(+3)')
 text(0.352, 0.35, '+0.25 +0.35')

 subplot(6,2,11)
 plt9=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([-0.55 -0.45 0 1.1])
 text(-0.443, 0.65, 'bin(-5)')
 text(-0.448, 0.35, '-0.45 +0.45')

 subplot(6,2,12)
 plt10=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor');
 grid
 axis([0.35 0.4501 0 1.1])
 text(0.457, 0.65, 'bin(+4)')
 text(0.452, 0.35, '+0.35 +0.45')
end

 39

%hh=remez(169,[0 40 60 500]/500,[1 1 0 0],[1 100]);
frq=[0 40 60 99 100 149 150 199 200 249 250 299 300 349 350 399 400 449 450 500]/500;
gn= [1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
pn= [1 100 140 180 220 260 300 340 380 420];
hh=remez(169,frq,gn,pn);
hh2=reshape(hh,10,17);

reg=zeros(10,17);
n2=1;
rr=zeros(1,100);
yy=zeros(10,n_dat/10);
yy2=zeros(10,100);

ww2=ones(1,100)/100;
ww1=kaiser(100,6)';
ww1=ww1/sum(ww1);

for nn=1:10:n_dat-10
 rr=[fliplr(xx(nn:nn+9)) rr(1:90)];
 reg(:,2:17)=reg(:,1:16);
 reg(:,1)=flipud(xx(nn:nn+9)');
 for mm=1:10
 vv(mm)=reg(mm,:)*hh2(mm,:)';
 end
 yy(:,n2)=fft(vv).';
 n2=n2+1;
 yy2=[fft(vv).' yy2(:,1:99)];
 if flag2==1

 set(plt0,'xdata',0:99,'ydata',real(rr));
 set(plt1,'xdata',0:0.1:9.9,'ydata',real(yy2(10,:)));
 set(plt2,'xdata',0:0.1:9.9,'ydata',real(yy2(1,:)));
 set(plt3,'xdata',0:0.1:9.9,'ydata',real(yy2(9,:)));
 set(plt4,'xdata',0:0.1:9.9,'ydata',real(yy2(2,:)));
 set(plt5,'xdata',0:0.1:9.9,'ydata',real(yy2(8,:)));
 set(plt6,'xdata',0:0.1:9.9,'ydata',real(yy2(3,:)));
 set(plt7,'xdata',0:0.1:9.9,'ydata',real(yy2(7,:)));
 set(plt8,'xdata',0:0.1:9.9,'ydata',real(yy2(4,:)));
 set(plt9,'xdata',0:0.1:9.9,'ydata',real(yy2(6,:)));
 set(plt10,'xdata',0:0.1:9.9,'ydata',real(yy2(5,:)));

else

 set(plt0,'xdata',(-0.5:1/100:0.5-1/100),'ydata',fftshift(abs(fft((rr.*ww1)'))));
 set(plt1,'xdata',-0.1+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(10,1:nn_dat)/nn_dat,100))));
 set(plt2,'xdata',(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(1,1:nn_dat)/nn_dat,100))));
 set(plt3,'xdata',-0.2+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(9,1:nn_dat)/nn_dat,100))));
 set(plt4,'xdata',+0.1+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(2,1:nn_dat)/nn_dat,100))));
 set(plt5,'xdata',-0.3+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(8,1:nn_dat)/nn_dat,100))));
 set(plt6,'xdata',+0.2+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(3,1:nn_dat)/nn_dat,100))));

 40

 set(plt7,'xdata',-0.4+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(7,1:nn_dat)/nn_dat,100))));
 set(plt8,'xdata',+0.3+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(4,1:nn_dat)/nn_dat,100))));
 set(plt9,'xdata',-0.5+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(6,1:nn_dat)/nn_dat,100))));
 set(plt10,'xdata',+0.4+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(5,1:nn_dat)/nn_dat,100))));

end
 set(txt,'string',['Sample # ',num2str(n2-1)])
pause(0.05)
end

