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Abstract: This paper provides a tutorial overview of mul-
tichannel wireless digital receivers and the relationships 
between channel bandwidth, channel separation, and 
channel sample rate. The overview makes liberal use of 
figures to support the underlying mathematics. A mul-
tichannel digital receiver simultaneously down-convert a 
set of frequency division multiplexed (FDM) channels 
residing in a single sampled data signal stream. In a 
similar way, a multichannel digital transmitter simultane-
ously up-converts a number of baseband signals to as-
semble a set of FDM channels in a single sampled data 
signal stream. The polyphase filter bank [1] has become 
the architecture of choice to efficiently accomplish these 
tasks. This architecture uses three [2, 3] interacting 
processes to assemble or to disassemble the channel-
ized signal set. In a receiver these processes are an in-
put commutator to effect spectral folding or aliasing due 
to a reduction in sample rate, a polyphase M-path filter 
to time align the partitioned and resampled time series in 
each path, and a discrete Fourier transform to phase 
align and separate the multiple base-band aliases. In a 
transmitter these same processes operate in a related 
manner to alias baseband signals to high order Nyquist 
zones while increasing the sample rate with the output 
commutator.  
     This paper presents a sequence of simple modifica-
tions to sampled data structures based on analog proto-
type systems to obtain the basic polyphase structure. 
We further discuss ways to incorporate small modifica-
tions in the operation of the polyphase system to ac-
commodate secondary performance requirements. 
MATLAB simulations of a 10, a 40, and a 50 channel 
resampling receiver are included in the electronic ver-
sion of this paper. An animated version of the 10-
channel resampling receiver illustrates the time and fre-
quency response of the filter bank when driven by a 
slowly varying linear FM sweep. 
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Motivation: Radio receivers and transmitters perform a 
sequence of invertible signal transformations in order to 
communicate through imperfect band limited channels. 
The transformations applied to waveforms are associ-
ated with disjoint frequency spans classically called 
baseband, intermediate frequency (IF), and radio fre-
quency (RF). Early radios performed the desired trans-
formations using appropriate linear and non-linear 
lumped and distributed analog circuit elements.  
      The confluence of three technology areas has had 
profound effect on the way we manipulate baseband and 
low IF signals. Two of these areas, enabled by the tran-
sistor and later by integrated circuits (ICs), are the ana-
log-to-digital and digital-to-analog converter (ADC & 
DAC) and the programmable microprocessor. The third 
technology area is algorithm development by the digital 
signal processing (DSP) community. These technologies 
coupled with an educated and motivated work force led 
inexorably to insertion of DSP in the signal-processing 
path of radio receiver and transmitter systems.  
      Intel’s former CEO Gordon Moore [4], observed that 
the cost of performing a specified processing task on an 
IC drops by a factor of two every 18-months or equiva-
lently, the amount of processing that can be performed 
at a fixed cost doubles every 18-months. This relation-
ship, known as Moore’s law appears to be unique to the 
semiconductor industry. A similar cost-performance 
curve does not exist for general circuit components. A 
consequence of Moore’s Law is the migration from de-
signs that assemble and integrate sub-system to designs 
that are full systems on a Chip (SOC).  
      An important participant in the semiconductor arena 
is the Field Programmable Gate Array (FPGA) [5]. The 
FPGA consists of a vast array of configurable logic tiles, 
multipliers, and memory. This technology provides the 
signal-processing engineer with the ability to construct a 
custom data path that is tailored to the application at 
hand. FPGAs offer the flexibility of instruction set digital 
signal processors while providing the processing power 
and flexibility of an ASIC. The FPGA enables significant 
design cycle compression and time-to-market advan-
tages, an important consideration in an economic cli-
mate with ever decreasing market windows and short 
product life cycles. 
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      DSP based processing of baseband and low IF sig-
nals offer cost and performance advantages related to 
manufacturability, insensitivity to environment, ability to 
absorb design changes, and ease of feature insertion for 
product evolution and differentiability. The DSP segment 
of a radio enhances the radio while reducing its cost thus 
enabling larger market penetration as well as new mar-
ket formation. DSP and RF and microwave communica-
tion systems are tightly coupled.  
      The authors have written this paper to help the RF 
and microwave engineer acquire an understanding of 
the key work performed by their DSP partners in pursuit 
of their common goal, the design and production of 
competitive, high quality, RF communication and RF 
monitoring systems. We start the paper with a review of 
a standard architecture for analog transmitters and re-
ceivers. Here the interface between continuous and 
sampled data is located at the end of the signal-
processing path and operates at the highest signal to 
noise ratio with the lowest sample rate. We then present 
variants of the standard architectures in which the oper-
ating conditions change to process signals at higher dy-
namic range and at higher sample rates. A common 
variant of the high sample rate option is IF sampling.  
      High sample rate converters offer the option in a re-
ceiver to acquire large segments of input bandwidth and 
absorb much of the signal processing tasks and func-
tions in DSP algorithms. The dual task of assembling 
large segments of bandwidth in a transmitter is implied 
but is not addressed here. The receiver processing in-
cludes, partitioning, filtering, translation, and demodu-
lated. The remainder of the paper is restricted to descrip-
tion of various techniques to accomplish single or multi-
ple channel extraction of signal bands from the band-
width collected by high bandwidth converters.    
 
Introduction: Base stations for cellular mobile commu-
nication systems [6] offer an example of a radio receiver 
that must down-convert and demodulate multiple simul-
taneous narrowband RF channels. The traditional archi-
tecture of a radio receiver that performs this task is 
shown in figure 1. This architecture contains N sets of 
dual-conversion sub-receivers. Each receiver amplifies 
and down-converts a selected radio-frequency (RF) 
channel to an intermediate frequency (IF) filter that per-
forms initial bandwidth limiting.  
      The output of each IF filter is again down converted 
to baseband by matched quadrature mixers that are fol-
lowed by matched base-band filters that perform final 
bandwidth control. Each quadrature down converted 
signal is then converted to their digital representation by 
a pair of matched analog-to-digital converters (ADC). 
The output of the ADCs is processed by digital signal 
processing (DSP) engines that perform the required 
synchronization, equalization, demodulation, detection, 
and channel decoding.   
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Figure 1. First Generation RF Architecture of N-Channel 

Receiver 
 

      Figure 2 shows a base station companion radio 
transmitter formed by N sets of dual conversion sub-
transmitters that modulate and up-convert multiple simul-
taneous narrowband RF channels. Note that the signal 
flow for the transmitter chain is simply a reversal of the 
signal flow of the receiver chain.   
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Figure 2. First Generation RF Architecture of N-Channel 
Transmitter 

 
      Gain and phase imbalance between the two paths 
containing the quadrature mixers, the analog baseband 
filters, and the ADC in an N-Channel receiver or N-
channel transmitter is the cause of cross talk between 
the in-phase and quadrature (I/Q) components [7]. This 
in turn results in coupling between the many narrowband 
channels sometimes called ghosts or images. This spec-
tral coupling can be described compactly by examining 
the model shown in figure 3. Here the composite I-Q 
gain and phase imbalances have been assigned to the 
quadrature term as the amplitude and phase shift of the 
sinusoid. 
      We can examine the unbalanced complex sinusoid 
presented to the mixer pair and compare its spectrum to 
that of the balanced spectrum. The complex sinusoid 
shown in eq-1 is expanded in eq-2 to explicitly show the 
positive and negative frequency components. Equation 3 
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uses the small signal approximation to obtain a simple 
estimate of the effects of gain and phase imbalance on 
the positive and negative frequency components of the 
quadrature mixer signal. Figure 4 presents a graphical 
visualization of these same spectral components. 
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Figure 3. Quadrature Down Converter With Gain and 
Phase Imbalance 
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      Besides the obvious coupling between the quadra-
ture components at the same frequency due to phase 
imbalance, we see a coupling between positive and 
negative frequencies due to both amplitude and phase 
imbalance. To achieve an imbalance related spectral 
image 40 dB below the desired spectral term, each im-
balance term must be less than 1% of the desired term. 
It is difficult to sustain, over time and temperature, gain 
and phase balance of analog components to better than 

1%. Third generation wireless systems impose severe 
requirements on level of I/Q balance. The need to 
achieve extreme levels of I/Q balance motivates us per-
form the complex conversion process in the DSP do-
main. 
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Figure 4. Spectral Components of Unbalanced Complex 

Sinusoid 
 
      Figures 5 and 6 present block diagrams of a second-
generation multichannel receiver and transmitter in 
which the conversion from analog to digital (or digital to 
analog) occurs at IF rather than at baseband. Examining 
the receiver, we see that the down conversion of the 
separate channels is performed by a set of digital down 
converters and digital low pass filters.  The digital proc-
ess can realize arbitrarily small levels of imbalance by 
controlling the number of bits involved in the arithmetic 
operations. Precision of coefficients used in the filtering 
process sets an upper bound to spectral artifact levels at 
–5 dB/bit so that 12-bit arithmetic can achieve image 
levels below –60 dB. Thus the DSP based complex 
down conversion does not introduce significant imbal-
ance related spectral terms. Similar comments apply to 
the DSP based up-conversions in the digital transmitter. 
The rule of thumb here is that the levels of spectral im-
ages are controlled to be below the quantizing noise 
floor of the ADC or DAC involved in the conversion 
process. A second advantage of digital translation proc-
ess is that the digital filters following or preceding the 
mixers are designed to have linear phase characteris-
tics, a characteristic trivially simple to realize in digital 
non-recursive filters [18].  
      The dynamic range and conversion speed of the 
ADC and the DAC becomes the limiting factor in the ap-
plication of the architectures shown in figures 5 and 6. 
The dynamic range of the converter is determined to first 
order, by the number of bits in the converter with each 
bit contributing 6-dB [8]. The Nyquist criterion [9] estab-
lishes the minimum sample rate to obtain an alias free 
representation of the sampled signal. The Nyquist crite-
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rion directs us to select the sample rate to exceed the 
two-sided bandwidth of the signal. Converters have the 
property that the product of sample rate and number of 
conversion levels is a constant [10]. This relationship is 
shown in eq-4 where b is the number of bits in the con-
verter. Equation 5, a rearrangement of eq-4, shows how 
the number of bits varies inversely with the sample rate. 
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Figure 5. Second Generation RF Architecture of N-

Channel Receiver 
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Figure 6. Second Generation RF Architecture of N-
Channel Transmitter 

 
      Figure 7 is a graphical presentation of this relation-
ship along with a scattering of data points showing the 
conversion speed versus precision performance exhib-
ited by a number of current (mid-year 2002) ADCs. A 
useful rule of thumb is that a converter operating at 10-
MHz sample rate can deliver 16-bit performance and 
that for every doubling of the sample rate results in a 1-
bit (or 6-dB) reduction in conversion precision. The 
sloped line in figure 7 matches this rule. The intercept of 
this performance line is related to the aperture uncer-
tainty of the conversion process, a parameter that im-
proves slowly in response to advances in semiconductor 
technology.   
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Figure 7. Scatter Diagram Showing Speed-Precision 
Performance of ADCs 
 
      A final comment on ADCs is that the spurious terms 
generated by converter non-linearities often exceed the 
quantizing noise levels described by the –6dB per bit 
rule. The true performance measure of the ADC is the 
full bandwidth, full-scale spurious free dynamic range 
(SPDR) [11].   
 
      The limited dynamic range available from high speed 
ADCs restricts the range of applications for the architec-
tures presented in figures 5 and 6 to IF center frequen-
cies to the low to mid 100’s of MHz. To extend the appli-
cation range of digital N-channel receivers and digital N-
channels transmitters we often use a hybrid scheme in 
which the initial complex down conversion is performed 
with analog I-Q mixers and the channelization is per-
formed digitally after the ADC. The first conversion can 
be considered a block conversion to baseband that de-
livers the frequency band of interest to the DSP arena 
for subsequent channelization. The hybrid forms of the 
digital N-channel receiver and the digital N-channel 
transmitter are shown in figures 8 and 9 respectively. 
DSP techniques are applied to the digitized I-Q data to 
balance the gain and phase offsets in the analog ADC 
and DAC. DSP based I-Q balance correction is a stan-
dard signal conditioning task in high-end as well as con-
sumer based receivers and transmitters. 
 
Digital Down Conversion: In the previous section we 
described the process of sampling an analog IF signal or 
complex analog baseband signal containing the set of N-
frequency division multiplexed channels to be further 
processed or channelized by DSP techniques. We con-
sider the input signal to be composed of many equal-
bandwidth, equally spaced, frequency division multi-

IBMUSER
高亮



 5

plexed (FDM) channels as shown in figure 10. These 
many channels are digitally down-converted to base-
band, bandwidth constrained by digital filters, and sub-
jected to a sample rate reduction commensurate with the 
bandwidth reduction.  
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Figure 8. Second Generation Hybrid RF Digital  
N-Channel Receiver 
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Figure 9. Second Generation Hybrid RF Digital  
N-Channel Transmitter 
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Figure 10. Input Spectrum of Frequency Division Multi-

plexed Signal to be Channelized 
 
      The signal processing task can be performed as a 
replica of the analog prototype solution by a DSP based 
set of independent down-conversion processes as indi-
cated in figure 11. For clarity of presentation, we de-
scribe how digital frequency denoted by the angle θk is 
derived from analog frequency fk. This change of vari-
ables is shown on equations 6 through 8. Equation 6 
presents a complex sinusoid of frequency 2πfk. We note 

that frequency is the time derivative of the time evolving 
phase angle θ(t) and has units of radians/second. The 
sampled data sinusoid is obtained by replacing the time 
variable “t” with the sampled time variable “nT” as shown 
in eq-7. Note that the units of the sample time variable 
are samples and seconds/sample respectively. The an-
gle formed by the product 2πfk and T or by the equivalent 
term 2πfk/fS, where fS=1/T, is shown in eq-8. Here the 
product term 2πfk, denoted by θk, has units of radi-
ans/second by seconds/sample or radians/sample. 
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Figure 11. Conventional Channelizer as a Replica of 
Analog Prototype: Down-Converters, Base-Band Filters, 

and Resamplers 
 
      An alternate implementation performs the channeli-
zation as a single merged process called a polyphase N-
Path filter bank [12] as shown in figure 12. The poly-
phase filter bank partition offers a number of significant 
advantages relative to the set of individual down conver-
sion receivers.  The primary advantage is reduced cost 
due to major reduction in system resources required to 
perform the multichannel processing. 
      The first sector in the communications community to 
make wide use of this form of the transmultiplxer was the 
Bell System network that used this structure in the early 
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1980’s to modulate and demodulate analog single side 
band (SSB) FDM supergroup containing 60 4-kHz chan-
nels [13]. We now present a tutorial review to describe 
how the conventional channelizer is converted to the 
standard polyphase channelizers [14, 15]. This review 
contains simple equations and informative block dia-
grams representing the sequence of modifications that 
affect the transformation. We then extend the tutorial to 
incorporate a number of variations to perform secondary 
processing tasks along with the basic channelization 
task.  
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Figure 12.  Polyphase Channelizer: Resampler, All-Pass 

Partition, and FFT Phase Shifters 
 
Transforming the Channelizer, First Step: The block 
diagram of a single channel of a conventional channel-
izer is shown in figure 13. This structure performs the 
standard operations of down conversion of the selected 
channel with a complex heterodyne, low-pass filtering to 
reduce bandwidth to the channel bandwidth, and down 
sampling to a reduced rate commensurate with the re-
duced bandwidth. We mention that the down sampler is 
commonly referred to as a decimator, a term which 
means to destroy every tenth one. Since nothing is de-
stroyed, and nothing happens in tenths, we prefer, and 
will continue to use the more descriptive name, down 
sampler. 
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   Figure 13. k-th Channel of Conventional Channelizer 
 

      The expression for y(n,k), the time series output from 
the k-th channel, prior to resampling, is a simple convo-
lution as shown in eq-9.  
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The output data from the complex mixer is complex 
hence is represented by two time series, I(n) and Q(n). 
The filter with real impulse response h(n) is implemented 
as two identical filters, each processing one of the quad-
rature time series. The convolution process is performed 
by a simple digital filter that performs the multiply and 
add operations between data samples and filter coeffi-
cients extracted from two sets of addressed memory 
registers. One register set contains the data samples 
while the other contains the coefficients that define the 
filter impulse response. This structure is shown in figure 
14.               

x(n)
x(n+ 1)

x(n-1) x(n-2) x(n-3)

y(n)

x(n-N)
.....

....

Coefficient Registers

Data Registers

 
 

Figure 14. Conceptual Digital Filter: Coefficients and 
Data Registers, Multipliers, and Adders 

 
       We can rearrange the summation of eq-9 to obtain a 
related summation reflecting the equivalency theorem 
[16]. The equivalency theorem states that the operations 
of down conversion followed by a low-pass filter are to-
tally equivalent to the operations of a band-pass filter 
followed by a down conversion. The block diagram dem-
onstrating this relationship is shown in figure 15, while 
the rearranged version of eq-9 is shown in eq-10. Note 
here, that the up-converted filter, h(n) exp(jθkn), is com-
plex and as such its spectrum resides only on the posi-
tive frequency axis without a negative frequency image. 
This is not a common structure for an analog prototype 
because of the difficulty of forming a pair of analog quad-
rature filters exhibiting a 90-degree phase difference 
across the filter bandwidth. The closest equivalent struc-
ture in the analog world is the filter pair used in image-
reject mixers.  
      Applying the transformation suggested by the 
equivalency theorem to an analog prototype system 
does not make sense since it doubles the required 
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hardware. We would have to replace a complex scalar 
heterodyne (two mixers) and a pair of low-pass filters 
with a pair of band-pass filters, containing twice the 
number of reactive components, and a full complex het-
erodyne (four mixers). If it makes no sense to use this 
relationship in the analog domain, why does it make 
sense in the digital world? The answer is found in the 
fact that we define a digital filter as a set of weights 
stored in coefficient memory. Thus, in the digital world,   
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Figure 15. Band-Pass Filter, k-th Channel of Channelizer 
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we incur no cost in replacing the pair of low pass filters 
h(n) required in the first option with the pair of band pass 
filters h(n) cos(nθk) and h(n) sin(nθk) required for the 
second option. We accomplish this task by a simple 
download to the coefficient memory. The filter structures 
corresponding to the two sides of the equivalency theo-
rem are shown in figure 16. Note the input signal inter-
acts with the complex sinusoid as a product at the filter 
input or as a convolution in the filter weights. 
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Figure 16. Block Diagrams Illustrating Equivalency Be-
tween Operations of Heterodyne and Baseband Filter 

With Band-Pass Filter and Heterodyne 
 
      We still have to address the matter of the full com-
plex heterodyne required for the down conversion at the 

filter output rather than at the filter input. Examining fig-
ure 16, we note that following the output down conver-
sion, we perform a sample rate reduction by retaining 
only one sample in every M-samples. Recognizing that 
there is no need to down convert the samples we dis-
card in the down sample operation, we choose to down 
sample only the retained samples. This is shown in fig-
ure 17. 
      We note in figure 17, that when we bring the down 
converter to the low data rate side of the resampler, we 
are in fact also down sampling the time series of the 
complex sinusoid. The rotation rate of the sampled com-
plex sinusoid is θ k and Mθ k radians per sample at the 
input and output respectively of the M-to-1 resampler. 
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Figure 17. Down Sampled Down Converter, 
Band-Pass k-th Channel 

 
This change in rotation rate is an aliasing affect, a sinu-
soid at one frequency or phase slope, appears at an-
other phase slope when resampled. We now invoke a 
constraint on the sampled data center frequency of the 
down converted channel. We choose center frequencies 
θ k which will alias to DC (zero frequency) as a result of 
the down sampling to Mθ k. This condition is assured if 
Mθ k is congruent to 2π, which occurs when Mθ k = k 2π, 
or more specifically, when θ k = k 2π/M. The modification 
to figure 17 to reflect this provision is seen in figure 18. 
The constraint, that the center frequencies be integer 
multiples of the output sample rate assures aliasing to 
base band by the sample rate change. When a channel 
aliases to base band by the resampling operation the 
resampled related heterodyne defaults to a unity-valued 
scalar, which consequently is removed from the signal-
processing path. Frequency offsets of the channel center 
frequencies, due to oscillator drift or Doppler effects, are 
removed after the down conversion by a baseband 
phase locked loop (PLL) controlled mixer. This base-
band mixer operates at the output sample rate rather 
than at the input sample rate for a conventional down 
converter. We consider this required final mixing opera-
tion a post conversion task and allocate it to the next 
processing block. 
      The operations invoked by applying the equivalency 
theorem to the down conversion process guided us to 
the following sequence of maneuvers: i) slide the input 
heterodyne through the low pass filters to their outputs, 
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   Digital
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One for each Channel
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-j     k

x(n) y(nM,k)

2π
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Figure 18. Alias to Base Band, Down Sampled Down 
Converter, Band-Pass k-th Channel 

 
ii) doing so converts the low pass filters to a complex 
band pass filter, iii) slide the output heterodyne to the 
downside of the down sampler, iv) doing so aliases the 
center frequency of the oscillator, v) restrict the center 
frequency of the band pass to be a multiple of the output 
sample rate, vi) doing so assures alias of the selected 
pass band to base band by the resampling operation, 
and finally, vii) discard the now unnecessary heterodyne. 
The spectral effect of these operations is shown in figure 
19. The savings realized by this form of the down con-
version is due to the fact we no longer require a quadra-
ture oscillator nor the pair of input mixers to effect the 
frequency translation.  
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Figure 19. Spectral Description of Down Conversion Re-

alized by a Complex Band Pass Filter at a Multiple of 
Output Sample Rate, Aliased to Baseband by Output 

Resampling 
 

Transforming the Channelizer, Second Step: Examin-
ing figure 18, we note that the current configuration of 
the single channel down converter involves a band pass 
filtering operation followed by a down sampling of the 
filtered data to alias the output spectrum to baseband. 
Following the idea developed in the previous section that 
led us to down-convert only those samples retained by 
the down sampler, we similarly conclude that there is no 
need to compute the output samples from the pass band 
filter that will be discarded by the down sampler. We now 
interchange the operations of filter and down sample 
with the operations of down sample and filter. The proc-
ess that accomplishes this interchange is known as the 
Noble Identity [17], which we now review. 
      The noble identity is compactly presented in figure 
20 which we describe with similar conciseness by  “The 
output from a filter H(ZM) followed by an M-to-1 down 
sampler is identical to an M-to-1 down sampler followed 
by the filter H(Z)”. The ZM in the filter impulse response 
tell us that the coefficients in the filter are separated M-
samples rather than the more conventional one sample 
delay between coefficients in the filter H(Z). We must 
take care to properly interpret the operation of the M-to-1 
down sampler. The interpretation is that the M-to1 down 
sampled time series from a filter processing every M-th 
input sample presents the same output by first down 
sampling the input by M-to-1 to discard the samples not 
used by the filter to compute the retained output samples 
and then operating the filter on the retained input sam-
ples. The noble identity works because M-samples of 
delay at the input clock rate is the same interval as one-
sample delay at the output clock rate. 
 
  

H(Z   ) H(Z )M

M-to-1 M-to-1

x(n) x(n)y(n) y(nM) y(nM) 
 
Figure 20. Noble Identity: A Filter Processing Every M-th 
Input Sample Followed by an Output M-to-1 Down Sampler is 
the same as an Input M-to-1 Down Sampler Followed by a 
Filter Processing Every M-th Input Sample. 
 
      We might ask, “Under what condition does a filter 
manage to operate on every M-th input sample?” We 
answer this query by rearranging the description of the 
filter to establish this condition so that we can invoke the 
noble identity. This rearrangement starts with an initial 
partition of the filter into M-parallel filter paths. The Z-
transform description of this partition is presented in 
equations 11 through 14, which we interpret in figures 21 
through 23. For ease of notation, we first examine the 
base-band version of the noble identity and then trivially 
extend it to the pass band version. 
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      Anticipating the M-to-1 resampling, we partition the 
sum shown in eq-11 to a sum of sums as shown in eq-
12. This partition maps a one-dimensional array of 
weights (and index markers Z-n) to a two dimensional 
array. This mapping is sometimes called lexicographic, 
for natural order, a mapping that occurs in the Cooley-
Tukey fast Fourier transform. In this mapping we load an 
array by columns but process the array by rows. In our 
example, the partition forms columns of length M con-
taining M successive terms in the original sum, and con-
tinues to form adjacent M-length columns till we account 
for all the elements of the original one-dimensional array. 
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      We note that the first row of the two dimensional ar-
ray is a polynomial in ZM, which we will denote H0(ZM) a 
notation to be interpreted as an addressing scheme to 
start at index 0 and increment in stride of length M. The 
second row of the same array, while not a polynomial in 
ZM, is made into one by factoring the common Z-1 term 
and then identifying this row as Z-1 H1(ZM). It is easy to 
see that each row of eq-12 can be described as Z-r 
Hr(ZM) so that eq-12 can be re-written in a compact form 
as shown in eq-13. 
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We rewrite eq-13 in the traditional summation form as 
shown in eq-14, which describes the original polynomial 
as a sum of delayed polynomials in ZM. 
      The block diagram reflecting this M-path partition of 
a resampled digital filter is shown in figure 21. The out-
put of the filter is the resampled sum of the output of the 
M separate filter stages along the M-paths. We pull the 
resampler through the output summation element and 
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down sample the separate outputs, only performing the 
output sum for the retained output sample points. With 
the resamplers at the output of each filter, which oper-
ates on every M-th input sample, we are prepared to 
invoke the noble identity and pull the resampler to the 
input side of each filter stage. This is shown in figure 22. 
The input resamplers operate synchronously, all closing 
at the same clock cycle. When the switches close, the 
signal delivered to the filter on the top path is the current 
input sample. The signal delivered to the filter one path 
down is the content of the one stage delay line, which of 
course is the previous input sample. Similarly, as we 
traverse the successive paths of the M-path partition, we 
find upon switch closure, that the k-th path receives a 
data sample delivered k-samples ago. We conclude that 
the interaction of the delay lines in each path with the set 
of synchronous switches can be likened to an input 
commutator that delivers successive samples to succes-
sive legs of the M-path filter. This interpretation is shown 
in figure 23. 
 
                       

H  (Z   )
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1
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....
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Figure 21. M-Path Partition of Prototype Low-Pass Filter 

with Output Resampler 
 
We now complete the final steps of the transform that 
changes a standard mixer down converter to a resam-
pling M-Path down converter. We note and apply the 
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frequency translation property of the Z-Transform [18]. 
This property is illustrated and stated in eq-15. Interpret-
ing the relationship presented in eq-15, we note that if 
h(n), the impulse response of a base band filter, has a Z-
transform H(Z), then the sequence h(n)e+jθn, the impulse 
response of a pass band filter, has a Z-transform H(Z e-

jθn). Simply stated, we can convert a low pass filter to a  
         

H  (Z )

H  (Z )

H  (Z )

H     (Z )

0

1

2

M-1
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M-to-1
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Figure 22. M-Path Partition of Prototype Low-Pass Filter 

with Input Resamplers 
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Figure 23. M-Path Partition of Prototype Low-Pass Filter 
with Input Path Delays and M-to-1 Resamplers Replaced 

by Input Commutator 
 

band pass filter by associating the complex heterodyne 
terms of the modulation process either with the filter 
weights or with the delay elements storing the filter 
weights. 
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      We now apply this relationship to eq-10, or equiva-
lently to figure 23 by replacing each Z with Z e-jθ, or per-
haps more clearly, replacing each Z-1 with Z-1 ejθ, with 
the phase term θ satisfying the congruency constraint of 
the previous section, that θ=k(2π/M). Thus Z-1 is re-
placed with Z-1 ejk(2π/M), and Z-M is replaced with Z-M 
ejkM(2π/M). By design, the kM-th multiple of 2π/M is a mul-
tiple of 2π for which the complex phase rotator term de-
faults to unity, or in our interpretation, aliases to base 
band (DC). The default to unity of the complex phase 
rotator occurs in each path of the M-path filter shown in 
figure 24. The non-default complex phase angles are 
attached to the delay elements on each of the M paths. 
For these delays, the terms Z-r are replaced by the terms 
Z-r ejkr(2π/M). The complex scalar ejkr(2π/M) attached to each 
path of the M-path filter can be placed anywhere along 
the path, and in anticipation of the next step, we choose 
to place the complex scalar after the down sampled path 
filter segments Hr(Z). This is shown in figure 24. 
      The modification to the original partitioned Z-
Transform of eq-14 to reflect the added phase rotators of 
figure 24 is shown in eq-16. 
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      The computation of the time series obtained from the 
output summation in figure 24 is shown in eq-17. Here 
the argument nM reflects the down sampling operation 
which increments through the time index in stride of 
length M, delivering every M-th sample of the original 
output series. The variable yr(nM) is the nM-th sample 
from the filter segment in the r-th path, and y(nM,k) is the 
nM-th time sample of the time series from the k-th center 
frequency. Remember that the down converted center 
frequencies located at integer multiples of the output 
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Figure 24.  Resampling M-Path Down Converter 
 
sample frequency are the frequencies that alias to zero 
frequency under the resampling operation. Note the out-
put y(nM,k) is computed as a phase coherent summation 
of the M output series yr(nM). This phase coherent sum 
is in fact, a DFT of the M-path outputs, which can be lik-
ened to beam-forming the output of the path filters.  
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      The beam-forming perspective offers interesting in-
sight to the operation of the resampled down-converter 
system we have just examined. The reasoning proceeds 
as follows: the commutator delivering consecutive sam-
ples to the M input ports of the M-path filter performs a 
down sampling operation. Each port of the M-path filter 
receives data at one-Mth of the input rate. The down 
sampling causes the M-to-1 spectral folding, effectively 
translating the M-multiples of the output sample rate to 
base band. The alias terms in each path of the M-path 
filter exhibit unique phase profiles due to their distinct 
center frequencies and the time offsets of the different 
down sampled time series delivered to each port. These 

time offset are in fact the input delays shown if figure 22 
and in eq-18. Each of the aliased center frequency ex-
periences a phase shift shown in eq-18, equal to the 
product of its center frequency and the path time delay. 
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      The phase shifters of the DFT perform phase coher-
ent summation, very much like that performed in narrow 
band beam forming, extracting from the myriad of ali-
ased time series, the alias with the particular matching 
phase profile. This phase sensitive summation aligns 
contributions from the desired alias to realize the 
processing gain of the coherent sum while the remaining 
alias terms, which exhibit rotation rates corresponding to 
the M roots of unity, are destructively canceled in the 
summation. 
 
The inputs to the M-path filter are not narrow band, and 
phase shift alone is insufficient to effect the destructive 
cancellation over the full bandwidth of the undesired 
spectral contributions. Continuing with our beam-forming 
perspective, to successfully separate wideband signals 
with unique phase profiles due to the input commutator 
delays, we must perform the equivalent of time-delay 
beam forming. The M-path filters, obtained by M-to-1 
down sampling of the prototype low-pass filter supply the 
required time delays. The M-path filters are approxima-
tions to all-pass filters, exhibiting, over the channel 
bandwidth, equal ripple approximation to unity gain and 
the set of linear phase shifts that provide the time delays 
required for the time delay beam forming task.  
      The filter achieves this property by virtue of the way 
we partitioned the low-pass prototype. Each of the M-
path filters, filter hr(n) for instance, with weights h(r+nM) 
is formed by starting with an initial offset of “r” samples 
and then incrementing by stride of M samples. The initial 
offsets, unique to each path, are the source of the differ-
ent linear phase shift profiles. It is for this reason, the 
different linear phase profiles, that the filter partition is 
known as a polyphase filter. The phase shift and group 
delay profiles for a 10-path filter are shown in figures 25 
and 26. These figures are part of the output suite of fig-
ures formed by the MATLAB m-file filter_ten contained 
in appendix-1 of the electronic version of this paper on 
the CDROM accompanying this issue. This file synthe-
sizes a 10-stage polyphase channelizer and presents 
input and output time series and spectra.  
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Figure 25. Phase Profiles for Ten-Stages of Ten Path 
Polyphase Partition 
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Figure 26. Group Delay Profiles for Ten-Stages of Ten 

Path Polyphase Partition 
 
 
      A useful perspective is that the phase rotators follow-
ing the filters perform phase alignment of the band cen-
ter for each aliased spectral band while the polyphase 
filters perform the required differential phase shift across 
these same channel bandwidths. When the polyphase 
filter is used to down convert and down sample a single 
channel the phase rotators are implemented as external 
complex products following each path filter. When a 
small number of channels are being down converted and 
down sampled, appropriate sets of phase rotators can 
be applied to the filter stage outputs and summed to 
form each channel output. We take a different approach 
when the number of channels becomes sufficiently large. 
Here sufficiently large means on the order of log2(N). 
Since the phase rotators following the polyphase filter 
stages are the same as the phase rotators of a DFT, we 

can use the DFT to simultaneously apply the phase 
shifters for all of the channels we wish to extract from the 
aliased signal set. This is reminiscent of phased array 
beam forming. For computational efficiency, the FFT 
algorithm implements the DFT.   
      It is useful to once again examine figure 12 in which 
the polyphase filter and FFT was first presented as a 
channelized receiver. Think of the many input arms of 
the FFT as being coupled through a set of distributed 
phase rotators to each output port of the FFT with each 
output port accessed through a different vector of phase 
slopes. Readers may recognize that the phase shifts 
between input and output ports of the FFT are the same 
as those forming the Butler Matrix used in phased array 
beam forming [19, 20]. 
      At this point it is instructive to make a comparison of 
the conventional mixer down converter and the resam-
pled polyphase down converter. The input to either 
process can be real or complex. In the mixer down con-
verter model, a separate mixer pair and filter pair must 
be assigned to each channel of the channelizer and that 
these mixers all operate at the high input data rate, prior 
to down sampling. By way of contrast, in the resampled 
polyphase there is only one low pass filter required to 
service all the channels of the channelizer, and this sin-
gle filter accommodates all the channels as co-
occupying alias contributors of the base band bandwidth. 
This means that all the processing performed in the re-
sampled polyphase channelizer occurs at the low output 
sample rate. When the input signal is real, there is an-
other significant difference between the two processes. 
In the mixer down converter model the signal is made 
complex by the input mixers as we enter the process, 
which means that the low pass-filtering task requires two 
filters, one for each of the quadrature components, while 
in the resampling channelizer the signal is made com-
plex by the phase rotators as we leave the process, con-
sequently we require only one partitioned low pass filter 
to process the real input signal. 
      Before moving on to the next topic, let us summarize 
what we have accomplished to this point. The commuta-
tor performs an input sample rate reduction by commu-
tating successive input samples to selected paths of the 
M-path filter. Sample rate reduction occurring prior to 
any signal processing causes spectral regions residing 
at multiples of the output sample rate to alias to base-
band. This desired result allows us to replace the many 
down-converters of a standard channelizer, implemented 
with dual mixers, quadrature oscillators, and bandwidth 
reducing filters, with a collection of trivial aliasing opera-
tions performed in a single portioned and resampled fil-
ter.  
      The partitioned M-path filter performs the task of 
aligning the time origins of the offset sampled data se-
quences delivered by the input commutator to a single 
common output time origin. This is accomplished by the 
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all-pass characteristics of the M-path filter sections that 
apply the required differential time delay to the individual 
input time series. The DFT performs the equivalent of a 
beam forming operation; the coherent summation of the 
time aligned signals at each output port with selected 
phase profiles. The phase coherent summation of the 
outputs of the M-path filters separate the various aliases 
residing in each path by constructively summing the se-
lected aliased frequency components located in each 
path, while simultaneously destructively canceling the 
remaining aliased spectral components.  
      This section of the presentation emphasized the 
structure of an N-channel polyphase receiver. A similar 
exposition can be mounted for the N-channel polyphase 
transmitter. Rather than repeat the many steps that took 
us to the polyphase structure from the more conven-
tional structure, we will merely comment that the trans-
mitter is the dual process of the receiver. The dual proc-
ess simply reverses all signal flow of the original proc-
ess. In the dual structure, we enter the N-channel proc-
ess at the FFT and leave the process by the polyphase 
commutator. Reversing the signal flow results in a proc-
ess that up-samples and up-converts rather than one 
that down converts and down samples. The two proc-
esses are shown in figure 27. 
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Figure 27. N-Channel Transmitter and N-Channel Re-
ceiver: Dual Circuits Formed With Polyphase Filters, 

FFT, and Commutator 
 

Arbitrary Bandwidth, Spectral Spacing, and Output 
Sample Rates: We now address the interaction and 
coupling, or lack of coupling, between the parameters 
that define the polyphase filter bank [21]. We observe 
that the DFT performs the task of separating the chan-
nels after the polyphase filter so it is natural to conclude 
that the transform size is locked to the number of chan-
nels and this is a correct assessment. We then note that 
the filter bandwidth is determined by the weights of the 
low pass prototype and that this bandwidth and spectral 
shape is common to all the channels. We comment on 
filter length later when we address total computation 
complexity of the polyphase channelizer. 
      In standard channelizer designs the bandwidth of the 
prototype is specified in accord with the end use of the 
channelizer outputs. For instance, when the channelizer 
is used as a spectral analyzer, the channels may be de-
signed to have a specified pass band attenuation such 
as –3 dB, or –1 dB or –0.1 dB at their crossover fre-
quency and have a specified stop band attenuation at 
their adjacent center frequency. Overlap of adjacent 
channel responses permits a narrow band input signal to 
straddle one or more output channels, which is a com-
mon occurrence in the spectral analysis of signals with 
arbitrary bandwidth and center frequencies. On the other 
hand, when a channelizer is used to separate adjacent 
communication channels which are characterized by 
known center frequencies and known controlled, non-
overlapping bandwidths, the channelizer must preserve 
separation of the channel outputs. Inadequate adjacent 
channel separation results in adjacent channel interfer-
ence. Typical spectral responses for channel bandwidths 
corresponding to the two scenarios just described are 
shown in figure 28. 
      The polyphase filter channelizer uses the input M-to-
1 resampling to alias the spectral terms residing at mul-
tiples of the output sample rate to base band. This 
means that for the standard polyphase channelizer, the 
output sample rate is the same as the channel spacing. 
For the case of the spectral analyzer application operat-
ing at this sample rate permits aliasing of the band 
edges into the down sampled pass band. When oper-
ated in this mode, the system is called a maximally 
decimated filter bank. For the case of the communication 
channelizer, operating at this rate satisfies the Nyquist 
criterion, permitting the separation of the channels with 
an output rate that avoids band edge aliasing.  An ex-
ample of a spectrum that would require this mode of op-
eration is the Quadrature Amplitude Modulation (QAM) 
channels of a digital cable system. Here the channels 
are separated by 6-MHz centers and operate with 20% 
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Figure 28. Spectral Characteristics of Two Channelizers 
with Same Channel Spacing One for Spectral Analysis 

and one for FDM Channel Separation 
 

excess bandwidth, square-root Nyquist shaped spectra, 
at symbol rates of 5.0 MHz.  The sampled data rate from 
a cable channelizer would be 6.0 Mega samples/sec and 
would satisfy the Nyquist sample criterion. 
       Another example used on the upstream cable link 
(subscriber to head end) is a set of channels operating 
at 128 kHz symbol rate, with square root Nyquist spectra 
having 50% excess bandwidth. The channels are sepa-
rated by 192 kHz, which matches the two-sided band-
width of the shaped channel. Here too, when operated at 
192-kHz the sample rate, matched to the channel spac-
ing, satisfies the Nyquist sample rate criterion. Systems 
that channelize and supply samples of the Nyquist 
shaped spectra most often present the sampled data to 
an interpolator to resample the time series from the col-
lected Nyquist rate to two times the symbol rate. For the 
two example cited earlier, the 6 Ms/s, 5-Msymbol TV 
signal would have to be resampled by 5/3 to obtain 10 
Ms/s, and the 192 ks/s, 128 K-symbol reverse channel 
signal would have to be resampled by 4/3 to obtain 256 
ks/s. These are not difficult tasks and it is done quite 
regularly in single channel receivers. This represents 
significant computational burden if we are to perform this 
interpolative resampling for every channel.   
      The conventional way we use the M-path polyphase 
filter bank is to deliver M-input samples to the M-paths 
and then compute outputs from each channel at the rate 
fs/M. The thought may occur to us, “Is it possible to op-
erate the polyphase filter bank in a manner that the out-
put rate is higher than one M-th of the input rate?” For 
instance, can we operate the bank so that we deliver 
M/2 inputs prior to computing an output sample rather 
than delivering M input samples before computing an 

output sample? Increasing the output sample rate of the 
polyphase channel bank by a factor of two makes sub-
sequent interpolation tasks less expensive since the 
spectra of the output signals would already be oversam-
pled by a factor two with increased spectral separation. 
Operation in this mode would also permit channelization 
of overlapped channels without aliasing of the spectral 
transition bands. The alias free partition is handy in ap-
plications requiring perfect reconstruction of the original 
time series from spectrally partitioned sub channels, a 
requirement sometimes imposed in receivers used for 
Electronic Warfare (EW) applications. For the record, a 
polyphase filter bank can be operated with an output 
sample rate any rational ratio times the input sample 
rate. With minor modifications the filter can be operated 
with totally arbitrary ratios between input and output 
sample rates. This is true for the sample rate reduction 
imbedded in a polyphase receiver as well as for the 
sample rate increase embedded in a polyphase transmit-
ter. 
      We first examine the task of increasing the output 
sample rate from the polyphase filter bank from fs/M to 2 
fs/M. We accomplish this by controlling the commutator 
delivering input data samples to the polyphase stages. 
We normally deliver M inputs to the M-stage filter by de-
livering successive input samples starting at port M-1 
progressing up the stack to port 0 and by doing so de-
liver M inputs per output for an M-to-1 down sampling. 
To obtain the desired (M/2)-to-1 down sampling, we de-
liver M/2 successive input samples starting at port (M/2)-
1 progressing up the stack to port 0. The M/2 addresses 
to which the new M/2 input samples are delivered are 
first vacated by their former contents, the M/2 previous 
input samples. All the samples in the two-dimensional 
filter undergo a serpentine shift of M/2 samples with the 
M/2 samples in the bottom half of the first column sliding 
into the M/2 top addresses of the second column while 
the M/2 samples in the top half of the second column 
slide into the M/2 addresses in the bottom half of the 
second column and so on. This is equivalent to perform-
ing a linear shift through the prototype one-dimensional 
filter prior to the polyphase partition. In reality, we do not 
perform the serpentine shift but rather perform a swap of 
two memory banks as shown in figure 29 for successive 
sequences of length 32 being delivered to a filter bank 
with 64 stages. 
      We continue this discussion with comments on the 
64-stage example. After each 32-point data sequence is 
delivered to the partitioned 64-stage polyphase filter the 
outputs of the 64-stages are computed and conditioned 
for delivery to the 64-point FFT. The data shifting into the 
polyphase filter stages causes a frequency dependent 
phase shift of the form shown in eq-19. The time delay 
due to shifting is nT where n is the number of samples, 
and T is the interval between samples. The frequencies 
of interest are integer multiple “k” of 1/M-th of the sample 
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rate 2π/T. Substituting these terms in eq-19 and cancel-
ing terms, we obtain the frequency dependent phase 
shift shown in eq-20. Here we see that for time shifts “n” 
equal to multiples of M, the phase shift is a multiple of 2π 
and contributes no offset to the spectra observed at the 
output of the FFT. The M-sample time shift is the time  
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Figure 29. Data Memory Loading for Successive 32-

Point Sequences in a 64-Stage Polyphase Filter 
 

 
shift applied to the data in the normal use of the poly-
phase filter. Now suppose that the time shift is M/2 time 
samples. When substituted in eq-20 we find a frequency 
dependent phase shift of kπ from which we conclude that 
odd indexed frequency terms experience a phase shift of 
π radians for each successive N/2 shift of input data. 
 

       ωωθ ⋅∆= t)(      (19) 
 

ππωθ 221)(
M
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knT =⋅=  (20) 

 
      This π radian phase shift is due to the fact that the 
odd indexed frequencies alias to the half sample rate 
when the input signal is down sampled by M/2. We can 
compensate for the alternating signs in successive out-
put samples by applying the appropriate phase correc-
tion to the spectral data as we extract successive time 
samples from the odd-indexed frequency bins of the 
FFT. The phase correction here is trivial, but for other 
down sampling ratios, the residual phase correction 

would require a complex multiply at each transform out-
put port. Alternatively, we can cancel the frequency de-
pendent phase shift by applying a circular time shift on 
N/2 samples to the vector of samples prior to their pres-
entation to the FFT. As in the case of the serpentine shift 
of the input data, the circular shift of the polyphase filter 
output data is implemented as a data swap. This data 
swap occurs on alternate input cycles and a simple two-
state machine determines for which input cycle the out-
put data swap is applied. This option is shown in figure 
30. 
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Figure 30. Cyclic Shift of Input Data to FFT to Absorb 
Phase Shift Due to Linear Time Shift of Data Through 

Polyphase Filter 
  
      We are now prepared to examine the process that 
permits resampling of the polyphase filter bank by any 
rational ratio. We first demonstrated the modification to 
the standard polyphase structure to support N/2 down 
sampling. The modifications involved a serpentine shift 
of input memory and a circular shift of output memory 
that are both implemented by data swaps. 
      There are relatively few papers in the open literature 
that describe arbitrary resampling embedded in the poly-
phase filter bank. Our group at SDSU had written an 
application note in 1989 [3] that demonstrated how to 
obtain arbitrary sample rates from the polyphase filter 
bank by use of the commutator mechanism with serpen-
tine data shifts just described. An earlier contribution [22] 
presented the technique for absorbing the phase shifts 
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at the output of the FFT as circular shifts of the data vec-
tor at the input to the FFT. Numerous papers have been 
written describing arbitrary resamplers for baseband in-
terpolators. We believe this paper is the first open litera-
ture description of the two merged techniques for poly-
phase channelizers. The technique is based on the ob-
servation that the commutator is the component in the 
polyphase filter bank that effects and controls the re-
sampling, not the spacing between the adjacent chan-
nels. This is true even though it was the resampling 
process that first guided us to select the channel spacing 
so we could access the aliasing to baseband. As we just 
demonstrated, there are two modifications to the poly-
phase-resampling filter required to obtain arbitrary re-
sampling. These modifications would normally lead to an 
exercise in time varying reside index mapping of the two-
dimensional input data array. If we limit the presentation 
to the index mapping process we would develop little 
insight into the process and further would be bored to 
tears. Instead we derive and illustrate the modifications 
by examining a specific example and observe the proc-
ess develop. 
 
Second Example Processing Task: Here we describe 
a more general resampling channelizer and present the 
process that guides us to the solution. The problem is 
this: we have a signal containing 50 FDM channels 
separated by 192 kHz centers containing symbols modu-
lated at 128 kHz by square-root Nyquist filters with 50% 
excess bandwidth. Our task is to base-band channelize 
all 50 channels and output data samples from each 
channel at 256 ks/s, which is two samples per symbol. 
We start by selecting a sample rate and transform size 
matched to the channel spacing. We select a 64-point 
FFT to span the 50 channels with the excess bandwidth 
allocated to the analog anti-alias filter. Thus the sample 
rate for the collected spectra is 64 times the 192 kHz 
channel spacing or 12.288 MHz. These are complex 
samples formed from either a base band block conver-
sion or a digital down conversion and resampling from a 
digital IF, often centered at the quarter sample rate. The 
desired output sample rate is 2 times 128 or 256 kHz. 
The ratio between the input and output sample rates is 
the resampling ratio, which is 12288/256 or 48-to-1. 
Thus our task is to use the 64 point DFT to separate and 
deliver 50 of the possible 64 channels spanned by the 
sample rate, but to deliver one output sample for every 
48 input samples. Figure 31 is a block diagram of the 
original maximally decimated version of the 64-stage 
polyphase channelizer and the modified form of the 
same channelizer. The difference in the two systems 
resides in the block inserted between the 64-stage poly-
phase filter and the 64-point FFT. Remarkably, the in-
serted block performs no computation but rather only 
performs a set of scheduled circular buffers shifts. We 

are about to develop and describe the operation of the 
circular buffer stage and state machine scheduler.  
      Our first task is to modify the input commutator to 
support the 48-to-1 down sample rather than the stan-
dard 64-to-1 down sample. This is an almost trivial task. 
We arrange for the modified resampling by keeping the 
64-path filter but stripping 16-ports from the commutator. 
The commutator for the standard 64-point polyphase 
filter starts at port 63 and delivers 64 successive inputs 
to ports 64, 63, 62, and so on through 0, the modified 
commutator starts at port 47 and delivers 48 successive 
inputs to ports 47, 46, 45, and so on through 0. Input 
memory for the 64-path filter must be modified to support 
this shortened commutator input schedule. The mapping 
structure of the reindexing scheme is best seen in the 
original, one-dimensional, prototype filter shown in figure 
32 and then transferred to the two-dimensional poly-
phase partition.  
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Figure 31. Maximally Decimated Filter Bank Structure 
and Modified Two-Sample-per-Symbol  

Filter Bank Structure 
 

      Figure 32 presents the memory content for a se-
quence of successive 48-point input data blocks pre-
sented to the 64-point partitioned prototype filter. In this 
figure we have indicated the interval of 64-tap bounda-
ries that become the columns of the two-dimensional 
array as well as the boundaries of successive 48-point 
input blocks that are presented to the input array. Suc-
cessive input blocks start loading at address 47 and 
work up to address 0. The beginning and end of this in-
terval are denoted by the tail and arrow respectively, of 
the left most input interval in the filter array. As each new 
48-point input array is delivered, the earlier arrays must 
shift to the right. These shifting array blocks cross the 
64-point column boundaries hence move to adjacent 
columns in the equivalent two-dimensional partition. This 
crossing can be visualized as a serpentine shift of data 
in the two dimensional array, or equivalently as a circular 
row buffer down shift of 48 rows in the poly phase mem-
ory with a simultaneous column buffer right shift of the 
input data column. The operation of this circular buffer is 
illustrated in figure 33, which indicates the indices of in-
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put data for two input cycles. Here we see that between 
two successive input cycles the rows in the top one-
fourth of memory translates to the bottom fourth while 
the bottom three-fourths of rows translates up one-fourth 
of memory. We also see that the columns in the bottom 
three-fourths shift to the right on column during the circu-
lar row translations. The next input array is loaded in the 
left most column of this group of addresses.  
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Figure 32. Memory Contents for Successive 48-Point 
Input Data Blocks Into a 64-Point Prototype Pre-
Polyphase Partitioned Filter and FFT 

 
      Returning to figure 32, the one-dimensional proto-
type, we note that every new data block shifts the input 
data origin to the right by 48 samples. The vector 
ŷ(r,48n) formed  as the polyphase filter output from all 64 
path filters is processed by the FFT to form the vector 
Ŷ(k,48n) of channelized (index k) output time series (in-
dex 48n). On each successive call to the FFT, the origin 
of the sinusoids in the FFT is reset to the beginning of 
the input array. Since the origin of the input array shifts 
to the right on successive inputs while the origin of the 
FFT simultaneously resets to the beginning of the input 
array, a precessing offset exists between the origins of 
the polyphase filter and of the FFT. We align the origins, 
removing the offsets, by performing a circular shift of the 
vector ŷ(r,48n) prior to passing it to the FFT. Since the 
offset is periodic and is a known function of the input 

array index the circular offset of the vector can be 
scheduled and controlled by a simple state machine. 
Figure 33 shows the location of the two origins for four 
successive 48-point input arrays and the amount of cir-
cular offset required to align the two prior to the FFT. 
Note that the offset schedule repeats in four cycles, four 
being the number of input intervals of length 48 that is a 
multiple of 64.  
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Figure 33. Memory Contents for Successive 48-Point 
Input Data Blocks Into a 64-Point Polyphase Filter 
 
      The cyclic shift for schedule for the array ŷ(r,48n) 
prior to the FFT is shown in figure 34, 
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Figure 34 Cyclic Shift Schedule for Input Array to FFT 
 
Appendix-II in the electronic version of this article con-
tain a MATLAB m-file that implements the 50-stage 
polyphase channelizer described in this section. The 
program plots the impulse response of the prototype low 
pass filter and the frequency response at the input sam-
ple rate and the output sample rate. It then plots the 
spectrum and the input signal formed as a sum of sinu-
soids distributed over the span of frequencies matching 
the bandwidth of the channelizer. Finally a series of plots 
are generated showing the time series from 60 of the 
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channelizer outputs. Here we observe the transient of 
the filtering process in the occupied and unoccupied 
channels as well as the effect of filtering and aliasing 
spectral translation of the occupied channels. The code 
is well annotated and the reader is invited to modify the 
input time series and probe the performance of the 
channelizer with a variety of test signals. 
 
Polyphase Computational Complexity: This section 
compares the computational workload required to im-
plement a channelizer as a bank of conventional down 
converters with that required to implement the polyphase 
resampling approach. Here we call on the example of 
the 50-channel channelizer to supply actual numbers. 
We first determine the length of the finite impulse re-
sponse (FIR) prototype filter required to satisfy the filter 
specifications. We note that the filter designed to operate 
at its input rate (12288 MHz) has its specifications con-
trolled by its output rate (256 kHz). This is because the 
filter must satisfy the Nyquist sampling criterion after 
spectral folding as a result of the down sample opera-
tion. The length of any FIR filter is controlled by the ratio 
of input sample rate to filter transition bandwidth and the 
required out-of band attenuation as well as level of in-
band ripple. The specifications of the filter used in this 
paper are listed in figure 35.  
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Figure 35. Spectral Characteristics of Prototype Filter at 

Output and Input Sample Rates 
 
      Standard design rules determine the filter length 
from the filter specification and for those indicated in fig-
ure 35, the filter length was found to be 512 samples and 
the Remez algorithm [23, 24] was used to supply the 
filter impulse response. A side comment is called for 
here. Filters designed by the standard Remez algorithm 
exhibit constant level out-of-band side-lobe levels. The 
spectra corresponding to these side-lobes folds back 
into the filter pass band under the resampling operation 
resulting in integrated side lobe levels considerably 
above the designed attenuation level. Modifying the 
penalty function of the Remez algorithm so that the side 
lobes fall off at approximately 6-dB per octave reduces 

the level of integrated side lobes. See, for instance, the 
filter design package QED-2000 available from Momen-
tum Data Systems. An alternate scheme to control spec-
tral side lobe decay rate involves modifying the end 
points of the filter impulse response to suppress the out-
lier samples responsible for the constant level spectral 
side lobes. See, for instance, the MATLAB examples in 
the appendices of the electronic version of this paper.  
      An important consideration and perspective for filters 
that have different input and output sample rates is the 
ratio of filter length (with units of operations/output) to 
resample ratio (with units of inputs/output) to obtain the 
filter workload (with units of operations/input). A useful 
comparison of two processes is the number of multiplies 
and adds per input point. We count a multiply and add 
with their requisite data and coefficient fetch cycles as a 
single processor operation and use the shorthand nota-
tion of “ops” per input. 
      A single channel of a standard down converter 
channelizer requires one complex multiply per input 
point for the input heterodyne and computes one com-
plex output from the pair of 512 tap filters after collecting 
48 inputs from the heterodyne. The 4 real ops per input 
for the mixer and the 2 (512/48) = 22 ops per input for 
the filter result in a per channel workload of 26 ops per 
input which occur at the input sample rate.  
      The polyphase version of the down converter col-
lects 48 input samples from the input commutator, per-
forms 1024 ops in the pair of 512 tap filters and then 
performs a 64-point FFT with its upper bound workload 
of 2N log2(N) real ops. The total workload of 1024 ops 
for the filter and 768 ops for the FFT results in 1792 ops 
performed once per 48 inputs for an input workload of 38 
real ops/input. The higher workload per input is the con-
sequence of forming 64 output channels in the FFT but 
preserving only 50 of them.  
      Now we must be careful: the workload per input 
sample for the standard channelizer was found to be 26 
ops, and for the polyphase channelizer was found to be 
38 ops: where is the promised advantage? The advan-
tage is that the polyphase 38 ops per input built all 50 
channels, and the standard down converter’s 26 ops per 
input built only one channel and has to be repeated 50 
times. Isn’t that impressive? Comparing numbers we see 
that we should use the polyphase form even if we are 
forming just a few output channels, because the poly-
phase down converter requires less computations than 
even two standard down converters.  
      On a final note, when we compare hardware re-
sources, we observe that the standard channelizer must 
build and apply 50 complex sinusoids as input hetero-
dynes to the input data at the high input sample rate and 
further must store the 50 sets of down converted data for 
the filtering operations. On the other hand, the poly-
phase filter bank only stores one set of input data be-
cause the complex phase rotators are applied after the 
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filter rather than before and the phase rotators are ap-
plied at the filter output rate as opposed to the filter input 
rate. 
 
Applications: The polyphase filter structure we have 
just reviewed and demonstrated can absorb a number of 
different system specifications. We now discuss some of 
the options. When the FDM signal is a collection of inde-
pendent signals, as might occur in a multiple access ap-
plication, the many signals do not share a common time 
reference or a common carrier frequency reference. The 
channels likely differ in small carrier and timing offsets 
that must be resolved in subsequent modem processing. 
For this situation it is appropriate for the channelizer to 
only perform the standard down conversion, bandwidth 
reduction, and sample rate reduction. For this application 
the filter passes the selected channel bandwidths with-
out further spectral modification. This form of multiple 
channelization is also appropriate for analog modulation 
such as the 30 kHz narrow-band FM channels found in 
analog wireless Advanced Mobile Phone Service 
(AMPS), or the old standby SSB super-group. 
      In another application, the multiple channels are 
tightly coupled with negligible frequency offset and only 
differ in local time base for the modulation. For this case 
we can require the polyphase filter bank to perform the 
functions of the matched filter. The filter passes the se-
lected channel bandwidths while performing the spectral 
shaping required of the matched filter. Since the data is 
formed at 2-samples per symbol, subsequent processing 
only has to align the phase of each channel and interpo-
late to the correct timing phase of the complex envelope. 
We note that the timing interpolation process requires 
significantly fewer resources than does the simultaneous 
interpolation matched filter and timing task.  
      In yet a third application, the multiple channels share 
a common clock and carrier reference hence are fully 
synchronous and exhibit negligible frequency offset. For 
this case we can ask the polyphase filter bank to perform 
the functions of the matched filter and to participate in 
timing recovery [25, 26]. Since in the example cited, we 
are down sampling by a factor of 48-to-1 there are 48 
different contenders for the arbitrary origin of the process 
task. We can have the timing recovery loop advance or 
retard the start of the vector load of the polyphase filter. 
Using the processing origin to shift the sample time rela-
tive to the underlying modulation epochs offers fine grain 
time offsets equal to 1% of symbol interval without the 
need for additional interpolation.    
      The example we used to demonstrate the polyphase 
resampling channelizer implemented a 1/48 resampling 
in a 64-stage channelizer. Any ratio of small integers can 
be implemented using variations of the technique we 
have presented. Also the number of polyphase filter 
stages in a multi-channel receiver does not have to be 
large to warrant the application of the process described 

here. For instance, we have designed a number of poly-
phase resampling structures for 3rd generation (3G) [27] 
wireless applications that employ from three to eleven 
channels, using 5-point and 15-point transforms. These 
applications have required sample rate changes from 
3.84 MHz to 6.144 MHz and to 15.36 MHz requiring ra-
tios of 3-to-5 and of 2-to-5.  
      In a fashion similar to the process we have pre-
sented here to design down-sampling polyphase re-
ceiver channelizers we can also design polyphase up-
sampling channelized transmitters. In fact when we de-
sign polyphase receivers, we are often obliged to design 
polyphase transmitters to test the receivers. An unex-
pected result discovered when we designed the trans-
mitters for a given receiver is that they are not each 
other’s duals because they are, in fact, not performing 
the inverse operators. For instance, in the receiver ex-
ample we developed here, we formed a 48-to-1 down 
sampler in a 64-point DFT, which is a ratio of 3/4. The 
modulator on the other hand forms channels at 128 kHz 
symbol rate at a common sample rate of 64 times 192 
kHz, an up sample of 96 in the 64-point DFT, which is a 
ratio of 2/3. 
      Finally, we note that there are filter structures [28] 
that permit the substitution of recursive polyphase filters 
for the non-recursive filter we have examined in this pa-
per. The recursive filter options offer a reduction in work-
load by a factor of 3 to 6 and are available with both non-
uniform phases and an equal-ripple approximation to 
linear phase. A minor drawback here is that the recur-
sion in the filter prohibits computation pipeline delay, 
which limits the maximum output sample rate to the 
range of 200 to 400 MHz.  
 
Conclusions: We have presented a description of the 
process by which a multichannel polyphase filter bank 
can simultaneously perform the uncoupled tasks of down 
conversion, bandwidth limiting, and sample rate change. 
We included a tutorial derivation of the polyphase filter 
bank as a sequence of transformations that rearrange 
the operations of mixing, filtering and resampling to ob-
tain remarkably efficient processing structures. The se-
quence of transformations included application of the 
equivalency theorem, alias based spectral translation, 
sometimes referred to as IF sampling and of the noble 
identity. We also demonstrated that the ratio of input 
sample rate to output sample rate could differ from the 
conventional resampling ratio, the number of stages in 
the polyphase partition. The modification to the conven-
tional polyphase channelizer required the insertion of 
circular buffers between the input commutator and the 
polyphase filter and the insertion of a second circular 
buffer between the output of the polyphase filter and the 
FFT phase rotator. A number of excellent tutorials [29, 
30, 31, 32] are available in the literature that present 
aspects of some of the material presented here from a 
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number of different perspectives. Readers may find 
value in examining other author’s perspectives after be-
ing exposed to ours.   
      We examined a specific example of a polyphase re-
sampling channelizer to better illustrate the processes 
required to obtain arbitrary resampling in the filter bank. 
Comments on variations to the modified polyphase 
structure were included to give the reader a sense of the 
wide range of applicability of this process. Finally we 
compared the workload of a standard mixer based down 
converter filter bank with that of the polyphase resam-
pling form. We invite readers to e-mail requests to the 
author for the MATLAB code that implements the 10-
channel and the 50-channel channelizer described in 
this paper. The electronic version of this paper has the 
MATLAB files attached as appendices. A MATLAB script 
for an animated version of the 10-channel channelizer is 
also included in the appendices as is a 40-channel 
modulator that performs a 1-to-56 up sampling with a 
companion 40-channel demodulator that performs a 28-
to-1 down sampling embedded in the channelization 
processes.   
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Appendix-I: MATLAB Simulation of 10-Stage Polyphase Channelizers 
 
function filter_ten(flag) 
% filter_ten(flag) flag=0 for flat sidelobes, flag=1 for falling sidelobes 
 
hh1=remez(169,[0 40 60 500]/500,[1 1 0 0],[1 100]); 
frq=[0 40 60 99 100 149 150 199 200 249 250 299 300 349 350 399 400 449 450 500]/500; 
gn= [1  1  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]; 
pn= [  1   100    140     180     220     260     300     340     380     420]; 
 
hh2=remez(169,frq,gn,pn); 
hh=hh1; 
if flag==1 
   hh=hh2; 
end 
 
figure(1) 
subplot(2,1,1) 
plot(hh) 
grid 
title('Impulse Response: Prototype Filter') 
xlabel('Normalized time nT/T') 
ylabel('Amplitude') 
subplot(2,1,2) 
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(0.000001+abs(fft(hh,1024))))) 
grid 
axis([-500 500 -90 10]) 
title('Frequency Response: Prototype Filter') 
xlabel('Frequency (kHz)') 
ylabel('Log-Magnitude (dB)') 
pause 
 
x1=1*cos(2*pi*(0:2299)*10/1000); 
x2=2+cos(2*pi*(0:2299)*15/1000); 
x2=x2.*cos(2*pi*(0:2299)*100/1000); 
x3=(3*cos(2*pi*(0:2299)*22/1000)+5*sin(2*pi*(0:2299)*6/1000)); 
x3=x3.*sin(2*pi*(0:2299)*300/1000); 
 
xx=x1+x2+x3; 
xx=[xx zeros(1,200)]; 
 
figure(2) 
subplot(2,1,1) 
plot(xx(1:200)); 
grid 
title('Real Input Time Series') 
xlabel('Normalized time nT/T') 
ylabel('Amplitude') 
 
subplot(2,1,2) 
ww=kaiser(1024,8)'; 
ww=ww/sum(ww); 
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(xx(1:1024).*ww,1024))))) 
grid 
axis([-500 500 -90 10]) 
title('Spectrum of Real Input Series') 
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xlabel('Frequency (kHz)') 
ylabel('Log-Magnitude (dB)') 
 
pause 
hold 
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(0.00001+abs(fft(hh,1024)))),'r') 
pause 
gg1=hh.*exp(j*2*pi*(-84.5:84.5)*100/1000); 
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg1,1024)))),'r--') 
gg2=hh.*exp(j*2*pi*(-84.5:84.5)*200/1000); 
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg2,1024)))),'r--') 
gg3=hh.*exp(j*2*pi*(-84.5:84.5)*300/1000); 
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg3,1024)))),'r--') 
gg4=hh.*exp(j*2*pi*(-84.5:84.5)*400/1000); 
plot((-0.5:1/1024:.5-1/1024)*1000,fftshift(20*log10(abs(fft(gg4,1024)))),'r--') 
hold 
pause 
 
hh2=reshape(hh,10,17); 
 
reg=zeros(10,17); 
n2=1; 
for nn=1:10:2500 
   
   reg(:,2:17)=reg(:,1:16); 
   reg(:,1)=flipud(xx(nn:nn+9)'); 
   for mm=1:10 
      vv(mm)=reg(mm,:)*hh2(mm,:)'; 
   end 
   yy(:,n2)=fft(vv)'; 
   n2=n2+1; 
end 
 
 
figure(3) 
subplot(5,2,1) 
plot(real(yy(1,:))) 
grid 
title('Time Series, Channels 1-5') 
rr=axis; 
rr(2)=250; 
axis(rr); 
subplot(5,2,2) 
ww=kaiser(200,8)'; 
ww=ww/sum(ww); 
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(1,20:219).*ww,256))))) 
axis([-50 50 -80 10]) 
grid 
title('Spectra, Channels 1-5') 
 
subplot(5,2,3) 
plot(real(yy(2,:))) 
grid 
rr=axis; 
rr(2)=250; 
axis(rr); 
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subplot(5,2,4) 
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(2,20:219).*ww,256))))) 
axis([-50 50 -80 10]) 
grid 
 
subplot(5,2,5) 
plot(real(yy(3,:))) 
grid 
rr=axis; 
rr(2)=250; 
axis(rr); 
 
subplot(5,2,6) 
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(3,20:219).*ww,256))))) 
axis([-50 50 -80 10]) 
grid 
 
subplot(5,2,7) 
plot(real(yy(4,:))) 
grid 
rr=axis; 
rr(2)=250; 
axis(rr); 
 
subplot(5,2,8) 
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(4,20:219).*ww,256))))) 
axis([-50 50 -80 10]) 
grid 
 
subplot(5,2,9) 
plot(real(yy(5,:))) 
grid 
rr=axis; 
rr(2)=250; 
axis(rr); 
 
subplot(5,2,10) 
plot((-0.5:1/256:.5-1/256)*100,fftshift(20*log10(abs(fft(yy(5,20:219).*ww,256))))) 
axis([-50 50 -80 10]) 
grid 
 
pause 
figure(4) 
subplot(2,2,1) 
plot(0,0) 
hold 
for mm=1:10 
   plot(0:1/64:1-1/64,(10*abs(fft(hh2(mm,:),64)))) 
end 
hold 
grid 
title('Spectral Magnitude Response of Ten Polyphase Filters') 
xlabel('Normalized Frequency') 
ylabel('Amplitude') 
axis([0 0.5 0.0 1.2]) 
 
subplot(2,2,3) 
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plot(0,0) 
hold 
for mm=1:10 
    plot(0:1:16,0.5*mm+10*hh2(mm,:)) 
end 
plot([7.55 8.45],[5.628 1.128],'r') 
hold 
grid 
title('Impulse Response of Ten Polyphase Filters') 
xlabel('Normalized Time') 
axis([-1 17 -0.2 6]) 
 
subplot(2,2,2) 
plot(0,0) 
hold 
for mm=1:10 
   plot(0:1/64:1-1/64,unwrap((angle((fft(hh2(mm,:),64)))))/pi) 
end 
hold 
grid 
title('Spectral Phase Response of Ten Polyphase Filters') 
axis([0 0.5 -9 0]) 
xlabel('Normalized Frequency (f/fs)') 
ylabel('Phase Shift (\theta/2\pi)') 
 
subplot(2,2,4) 
plot(0,0) 
hold 
for mm=1:10 
   vv=unwrap(angle(fftshift(fft(hh2(mm,:),64))))/(2*pi); 
   vv2=64*filter([1 -1],1, vv); 
   plot(0:1/64:1-1/64,fftshift(vv2)) 
end 
hold 
grid 
title('Spectral Group Delay Response of Ten Polyphase Filters') 
xlabel('Normalized Frequency (f/fs)') 
ylabel('Group Delay (d\theta/d\omega) (Samples)') 
%axis([0 0.5 -9 0]) 
axis([0 0.5 -9 -7]) 
 
 
% pause    
% figure(5) 
% plot(0,0) 
% hold 
% for mm=1:10 
%    plot(0:1/64:1-1/64,unwrap((angle((fft(hh2(mm,:),64)))))/pi) 
% end 
% hold 
% grid 
% title('Spectral Phase Response of Ten Polyphase Filters') 
% axis([0 0.5 -9 0]) 
% xlabel('Normalized Frequency (f/fs)') 
% ylabel('Phase Shift (\theta/2\pi)') 
% figure(6) 
% plot(0,0) 



 26

% hold 
% for mm=1:10 
%    vv=unwrap(angle(fftshift(fft(hh2(mm,:),64))))/(2*pi); 
%    vv2=64*filter([1 -1],1, vv); 
%    plot(0:1/64:1-1/64,fftshift(vv2)) 
% end 
% hold 
% grid 
% title('Spectral Group Delay Response of Ten Polyphase Filters') 
% axis([0 0.5 -9 -7]) 
% xlabel('Normalized Frequency (f/fs)') 
% ylabel('Group Delay (d\theta/d\omega) (Samples)') 
%  
% gg=get(gca); 
% set(gca,'gridlinestyle','-') 
 
 
Appendix-II: MATLAB SIMULATION OF 50-CHANNEL CHANNELIZER     
 
function polyphase_50a 
% demonstration of resampling polyphase filter bank 
 
% building filter 
hh=remez(511,[0 96 160 192*32]/(192*32),[1 1 0 0],[1 13]); 
hh(1)=hh(2)/4; 
hh(2)=hh(2)/2; 
hh(512)=hh(1); 
hh(511)=hh(2); 
 
% examine prototype filter 
figure(1) 
subplot(2,1,1) 
plot(hh) 
axis([-10 520 -0.005 0.022]) 
title(' Impulse Response, Prototype Filter’) 
grid 
subplot(2,1,2) 
plot((-0.5:1/2048:.5-1/2048)*64,fftshift(20*log10(abs(fft(hh,2048)))),'r') 
grid 
axis([-32 32 -80 10]) 
xlabel('Normalized Frequency f/f_C_h_a_n_n_e_l') 
ylabel('log magnitude (dB)') 
title('Frequency Response, Prototype Filter') 
pause 
 
% zoom to passband and compare with spectral copies at output rate 
hold 
het1=exp(j*2*pi*(0:511)/48); 
het2=exp(-j*2*pi*(0:511)/48); 
plot((-0.5:1/2048:.5-1/2048)*64,fftshift(20*log10(abs(fft(hh.*het1,2048))))) 
plot((-0.5:1/2048:.5-1/2048)*64,fftshift(20*log10(abs(fft(hh.*het2,2048))))) 
hold 
axis([-2 2 -80 10]) 
title('Frequency Response, Prototype and Replicates at Output Rate') 
pause 
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% building sample input signal: can replace with any other signal set 
% channel 0 is empty.  
ff=[1:25]+0.02; 
xx=zeros(1,4848); 
for rr=1:25 
   xx=xx+exp(j*2*pi*(0:4847)*ff(rr)/64); 
   xx=xx+exp(-j*2*pi*(0:4847)*ff(rr)/64); 
end 
 
% mapping one-dimensional prototype filter to two-dimensional filter 
hh2=reshape(hh,64,8); 
 
% defining two-dimensional array of commutated input samples 
reg2=zeros(64,8); 
 
% defining initial condition of 4-state state machine 
state=1; 
 
% filtering data 
 
n_dat=1; 
for nn=1:48:4800 
 
% circularly roll and shift data array 
temp=reg2(1:16,:); 
reg2(1:48,2:8)=reg2(17:64,1:7); 
reg2(49:64,:)=temp; 
 
%load input data array 
reg2(1:48,1)=xx(nn+47:-1:nn)'; 
 
% form inner products 
for mm=1:64 
  dd(mm)=reg2(mm,:)*hh2(mm,:)'; 
end 
 
% circular shift output array dd 
if state==1; 
   state=2; 
   dd_shift=dd; 
elseif state==2; 
   state=3; 
   dd_shift=[dd(49:64) dd(1:48)]; 
elseif state==3; 
   state=4; 
   dd_shift=[dd(33:64) dd(1:32)]; 
elseif state==4; 
   state=1; 
   dd_shift=[dd(17:64) dd(1:16)]; 
end 
 
% phase shift via fft 
 
dd2(n_dat,:)=fftshift(fft(dd_shift)); 
n_dat=n_dat+1; 
end 
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% output 60 channelized time series 
figure(2) 
for kk=1:12 
   subplot(3,4,kk) 
   plot(real(dd2(:,3+kk))) 
   ss=sprintf('time series:, channel %2i ', -28+kk); 
   title(ss)  
   grid 
   axis([0 100 -1.1 1.1]) 
end 
figure(3) 
for kk=1:12 
   subplot(3,4,kk) 
   plot(real(dd2(:,15+kk))) 
   ss=sprintf('time series:, channel %2i ', -17+kk); 
   title(ss)  
   grid 
   axis([0 100 -1.1 1.1]) 
end 
figure(4) 
for kk=1:12 
   subplot(3,4,kk) 
   if kk==6 
      plot(real(dd2(:,27+kk)),'r') 
   else 
     plot(real(dd2(:,27+kk))) 
   end 
   ss=sprintf('time series:, channel %2i ', -6+kk); 
   title(ss)  
   grid 
   axis([0 100 -1.1 1.1]) 
end 
figure(5) 
for kk=1:12 
   subplot(3,4,kk) 
   plot(real(dd2(:,39+kk))) 
   ss=sprintf('time series:, channel %2i ', 5+kk); 
   title(ss)  
   grid 
   axis([0 100 -1.1 1.1]) 
end 
figure(6) 
for kk=1:12 
   subplot(3,4,kk) 
   plot(real(dd2(:,51+kk))) 
   ss=sprintf('time series:, channel %2i ', 16+kk); 
   title(ss)  
 
   grid 
   axis([0 100 -1.1 1.1]) 
end 
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Appendix-III: MATLAB SIMULATION OF 40-CHANNEL CHANNELIZER  
 
function receiver_40z; 
% receiver_40z is a demo of a 40 channel receiver, demodulating 30 channels, 
% of nominal symbol rate 20 MHz, separated by 28 MHz centers (1.4 times symbol rate)  
% input sample rate is 40*28 = 1120 MHz.  
% receiver performs a 40 point transform on the output of a 40-stage polyphase filter 
% the polyphase filter operates at input rate but outputs at 2 samples/symbol or 
% 40 MHz. The resampling rate is 1120/40 = 28-to-1, thus output from 40-channels are 
% computed once for every 28 input samples. channelizer is not matched filter,  
% prototype filter is 10% wider than two sided bandwidth of input signal to accommodate 
% frequency uncertainty of separate channel centers. 
 
%igo=0; 
%while igo==0 
%   igo=1; 
%chan=input('enter channel number (-15 to +14) -> '); 
%  if chan>14 
%     igo=0; 
%  end 
%  if chan<-15 
%     igo=0; 
%  end 
%end 
 
%if chan<15 
%   chan=chan+1; 
%end 
%if chan<0 
%chan=chan+40; 
%end 
 
 
% signal generator section 
 
hh_a=rcosine(1,112,'sqrt',0.4,6); 
hh_b=hh_a(2:2:1345); 
hh_b2=reshape(56*hh_b,56,12); 
rr2=zeros(56*5,12); 
 
xx1=2*floor(2*rand(28,100))-1; 
xx1=xx1+j*(2*floor(2*rand(28,100))-1); 
rr_a=zeros(1,40); 
 
 
flag=0; 
for nn=1:100 
   %rr_a(10:29)=xx1(:,nn)'; 
   rr_a(1:14)=xx1(1:14,nn)'; 
   rr_a(27:40)=xx1(15:28,nn); 
   rr_a(38)=0; 
   rr_a(39)=0; 
 
   %rr_a=fftshift(rr_a); 
   rr_b=fft(rr_a); 
   rr_b_ext=[rr_b rr_b rr_b rr_b rr_b rr_b rr_b]; 
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   rr2(:,2:12)=rr2(:,1:11); 
   rr2(:,1)=rr_b_ext'; 
    
    
   for mm=1:56 
      xx_d((nn-1)*56+mm)=rr2(mm+56*flag,:)*hh_b2(mm,:)'; 
   end 
    
   flag=flag+1; 
   if flag==5; 
      flag=0; 
   end 
    
end 
figure(1) 
 
subplot(2,1,1) 
plot(real(xx_d(1:800))); 
grid 
title('real part of composite time signal') 
subplot(2,1,2) 
ww=kaiser(4096,8)'; 
ww=ww/sum(ww); 
fxx=fftshift(20*log10(abs(fft(xx_d(1:4096).*ww)))); 
plot((-0.5:1/4096:.5-1/4096)*40,fxx) 
hold 
plot((-51/4096:1/4096:51/4096)*40,fxx(2049-51:2049+51),'r') 
hold 
grid 
axis([-20 20 -60 10]) 
title('Spectrum: composite time signal') 
pause 
 
%xx=exp(j*2*pi*(0:5600)*chan/40); 
%xx=xx+exp(j*2*pi*(0:5600)*5.001/40); 
%xx(1000:1500)=zeros(1,501); 
 
xx=xx_d; 
 
%receiver section 
 
%hh=remez(319, [0 14 27 560]/560,[1 1 0 0]); 
ff=[0 12 17 56 57 84 85 112 113 140 141 168 169 196 197 224 225 252 253 280 281 308 309 
336 337 364 365 392 393 420 421 448 449 476 477 504 505 532 533 560]/560; 
gg=[1  1  0  0  0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 ];   
dd=[  1     6     7     9      11      13      15      17      19      21     23      
25       27      29      31      33      35      37      39      41]; 
 
hh=remez(599,ff,gg,dd); 
 
hh2=reshape(hh,40,15); 
rr=zeros(40,15); 
 
tt=1; 
flg=1; 
for nn=1:28:5600-28 
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   temp=rr(1:12,:); 
   rr(1:28,2:15)=rr(13:40,1:14); 
   rr(1:28,1)=flipud(xx((nn-1)+1:(nn-1)+28)'); 
   rr(29:40,:)=temp; 
    
   for mm=1:40 
      y(mm)=rr(mm,:)*hh2(mm,:)'; 
   end 
   if flg==1 
      r1=fftshift(fft(y)); 
      flg=2; 
   elseif flg==2 
      r1=fftshift(fft([y(29:40) y(1:28)])); 
      flg=3; 
    elseif flg==3 
      r1=fftshift(fft([y(17:40) y(1:16)])); 
      flg=4; 
    elseif flg==4 
      r1=fftshift(fft([y(5:40) y(1:4)])); 
      flg=5; 
    elseif flg==5 
      r1=fftshift(fft([y(33:40) y(1:32)])); 
      flg=6; 
    elseif flg==6 
      r1=fftshift(fft([y(21:40) y(1:20)])); 
      flg=7; 
    elseif flg==7 
      r1=fftshift(fft([y(9:40) y(1:8)])); 
      flg=8; 
    elseif flg==8 
      r1=fftshift(fft([y(37:40) y(1:36)])); 
      flg=9; 
    elseif flg==9 
      r1=fftshift(fft([y(25:40) y(1:24)])); 
      flg=10; 
    elseif flg==10 
      r1=fftshift(fft([y(13:40) y(1:12)])); 
      flg=1; 
end 
       
      yy(:,tt)=r1'; 
       
      tt=tt+1; 
end 
 
figure(2) 
for kk=1:30 
   subplot(5,6,kk) 
   if kk==16 
      plot(real(yy(kk+5,:)),'r') 
   else 
      plot(real(yy(kk+5,:))) 
   end 
    
grid 
axis([0 200 -10 10]) 
end 
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figure(3) 
   
ww=kaiser(199,7)'; 
ww=ww/sum(ww); 
for kk=1:30 
   subplot(5,6,kk) 
   if kk==16 
plot((-0.5:1/256:.5-1/256)*2,fftshift(20*log10(abs(fft(yy(kk+5,:).*ww,256)))),'r') 
else 
plot((-0.5:1/256:.5-1/256)*2,fftshift(20*log10(abs(fft(yy(kk+5,:).*ww,256))))) 
end 
 
grid 
axis([-1 1 -60 10]) 
end 
subplot(5,6,16) 
hold 
plot([-0.95 0.95 0.95 -0.95 -0.95],[-59 -59 9 9 -59],'r') 
hold 
 
%pause 
%figure(4) 
%subplot(2,2,1) 
%plot(hh) 
%grid 
 
%title('prototype receiver filter') 
 
%subplot(2,2,3) 
%plot((-0.5:1/2048:.5-1/2048)*40,fftshift(20*log10(abs(fft(hh,2048))))); 
%grid 
%axis([-20 20 -80 10]) 
%title('spectrum: receiver filter') 
 
%subplot(2,2,2) 
%plot(hh_b) 
%grid 
 
%title('prototype transmitter filter') 
 
%subplot(2,2,4) 
%plot((-0.5:1/2048:.5-1/2048)*40,fftshift(20*log10(abs(fft(hh_b/sum(hh_b),2048))))); 
%grid 
%axis([-20 20 -80 10]) 
%title('spectrum: transmitter filter') 
 
 
 
 
 
 
 
Appendix-IV: MATLAB ANIMATED SIMULATION OF 10-CHANNEL CHANNELIZER 

(CALLS filter_ten_a_call IN-APPENDIX-V.)  
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%filter_ten_a 
 
% Animated spectra and time response of 10-stage polyphase filter bank. 
% Can move single tone through filter bank via a slider control or by a scheduled sweep  
 
clear all 
 
freq=0.1; 
 xx= exp(j*2*pi*(0:2499)*freq); 
 
figure(1) 
subplot(6,2,1) 
d_in=zeros(1,100); 
plot(0:99,real(d_in)); 
grid 
axis([0 100 -1.1 1.1]); 
 
subplot(6,2,3) 
d_1=zeros(1,100); 
plot(0:0.1:9.9,d_1); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,4) 
d_2=zeros(1,100); 
plot(0:0.1:9.9,d_2); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,5) 
d_3=zeros(1,100); 
plot(0:0.1:9.9,d_3); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,6) 
d_4=zeros(1,100); 
plot(0:0.1:9.9,d_4); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,7) 
d_5=zeros(1,100); 
plot(0:0.1:9.9,d_5); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,8) 
d_6=zeros(1,100); 
plot(0:0.1:9.9,d_6); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,9) 
d_7=zeros(1,100); 
plot(0:0.1:9.9,d_7); 
grid 
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axis([0 10 -1.1 1.1]); 
 
subplot(6,2,10) 
d_8=zeros(1,100); 
plot(0:0.1:9.9,d_8); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,11) 
d_9=zeros(1,100); 
plot(0:0.1:9.9,d_9); 
grid 
axis([0 10 -1.1 1.1]); 
 
subplot(6,2,12) 
d_10=zeros(1,100); 
plot(0:0.1:9.9,d_10); 
grid 
axis([0 10 -1.1 1.1]); 
 
freq=0.1; 
flag1=1;     
% flag1=1 slider control, flag1=0 scheduled sweep 
flag2=1;     
% flag2=1 time display, flag2=0 frequency display 
 
slider_1=uicontrol('style','slider','units','normalized','pos',[0.65 0.90 0.19 
0.028],... 
         'min',-0.4,'max',+0.4,'value',freq,... 
         'callback',['freq=0.01*round(100*get(slider_1,''value''));',... 
             'set(slider_1_cur,''string'',num2str(freq)),',... 
             'set(gca,''view'',[0 0.5]),',... 
             'filter_ten_a_call(freq,flag1,flag2)']); 
 
slider_1_min=uicontrol('style','text','units','normalized','pos',[0.62 0.90 0.025 
0.025],... 
    'string', num2str(get(slider_1,'min'))); 
 
slider_1_max=uicontrol('style','text','units','normalized','pos',[0.84 0.90 0.025 
0.025],... 
    'string',num2str(get(slider_1,'max'))); 
 
slider_1_cur=uicontrol('style','text','units','normalized','pos',[0.78 0.87 0.055 
0.025],... 
    'string',num2str(0.01*round(100*get(slider_1,'value')))); 
 
slider1_title=uicontrol('style','text','units','normalized','pos',[0.690 0.87 0.10 
0.025],... 
    'string','Center Frequency'); 
 
 
h30=uicontrol('style','pushbutton','string','SLIDER','units','normalized',... 
    'position',[0.6 0.830 0.055 
0.030],'callback',['flag1=1;','filter_ten_a_call(freq,flag1,flag2)']); 
h40=uicontrol('style','pushbutton','string','SWEEP','units','normalized',... 
    'position',[0.67 0.830 0.055 
0.030],'callback',['flag1=0;','filter_ten_a_call(freq,flag1,flag2)']); 
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h50=uicontrol('style','pushbutton','string','TIME','units','normalized',... 
    'position',[0.74 0.830 0.055 
0.030],'callback',['flag2=1;','filter_ten_a_call(freq,flag1,flag2)']); 
h60=uicontrol('style','pushbutton','string','FREQ','units','normalized',... 
    'position',[0.81 0.830 0.055 
0.030],'callback',['flag2=0;','filter_ten_a_call(freq,flag1,flag2)']); 
 
 
 
Appendix-V: MATLAB ANIMATED SIMULATION OF 10-CHANNEL CHANNELIZER 

(CALLED BY  filter_ten_a  IN APPEDIX-IV.)  
 
function filter_ten_a_call(freq,flag1,flag2) 
% called by filter_ten_a 
 
if flag1==1 
    n_dat=1200; 
xx= exp(j*2*pi*(0:n_dat-1)*freq); 
ww1=kaiser(100,6)'; 
ww1=ww1/sum(ww1); 
nn_dat=100; 
 
 
else 
    n_dat=10000; 
    frq=[0:1/2500:1 1-1/2500:-1/2500:-1 -1+1/2500:1/2500:-1/2500]; 
    phs=filter([1 0],[1 -1],frq); 
    xx=exp(j*2*pi*phs*0.45); 
 
ww1=kaiser(100,6)'; 
ww1=ww1/sum(ww1); 
nn_dat=12; 
end 
 
if flag2==1 
     
    subplot(6,2,1) 
    plt0=plot(0:99,real(xx(1:100)),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 100 -1.1 1.1]) 
    title('Input Time Series') 
     
    mm=0; 
    txt=text(105,0.0,['Sample # ',num2str(mm,3)]); 
 
    
    subplot(6,2,3) 
    plt1=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1]) 
    text(10.6, 0.3, 'bin(-1)') 
     text(10.2, -0.3, '-0.15 -0.05') 
      
    subplot(6,2,4) 
    plt2=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
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    axis([0 10 -1.1 1.1]) 
    text(10.6, 0.3, 'bin(0)') 
     text(10.2, -0.3, '-0.05 +0.05') 
      
    subplot(6,2,5) 
    plt3=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1])  
     text(10.6, 0.3, 'bin(-2)') 
      text(10.2, -0.3, '-0.25 -0.15') 
      
    subplot(6,2,6) 
    plt4=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1]) 
     text(10.6, 0.3, 'bin(+1)') 
      text(10.2, -0.3, '+0.05 +0.15') 
      
    subplot(6,2,7) 
    plt5=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1]) 
     text(10.6, 0.3, 'bin(-3)') 
      text(10.2, -0.3, '-0.35 -0.25') 
     
    subplot(6,2,8) 
    plt6=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1])  
     text(10.6, 0.3, 'bin(+2)') 
      text(10.2, -0.3, '+0.15 +0.25') 
      
    subplot(6,2,9) 
    plt7=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1])  
     text(10.6, 0.3, 'bin(-4)') 
     text(10.2, -0.3, '-0.45 -0.35') 
      
    subplot(6,2,10) 
    plt8=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1]) 
     text(10.6, 0.3, 'bin(+3)') 
     text(10.2, -0.3, '+0.25 +0.35') 
      
     subplot(6,2,11) 
    plt9=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1]) 
     text(10.6, 0.3, 'bin(-5)') 
      text(10.2, -0.3, '-0.45 +0.45') 
     
    subplot(6,2,12) 
    plt10=plot(0:99,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0 10 -1.1 1.1])  
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     text(10.6, 0.3, 'bin(+4)') 
      text(10.2, -0.3, '+0.35 +0.45') 
else 
    ww=kaiser(100,6)'; 
    ww=ww/sum(ww); 
    hp=remez(99,[0 40 60 500]/500,[1 1 0 0],[1 1]); 
    
    fhp=fftshift(abs(fft(hp,100))); 
    subplot(6,2,1) 
    plt0=plot(-0.5:1/100:0.5-
1/100,fftshift(abs(fft(xx(1:100).*ww))),'linewidth',3,'erasemode','xor'); 
      
    hold on 
    plot(-0.5:1/100:.5-1/100,fhp,'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(11:100) fhp(1:10)],'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(21:100) fhp(1:20)],'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(31:100) fhp(1:30)],'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(41:100) fhp(1:40)],'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(61:100) fhp(1:60)],'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(71:100) fhp(1:70)],'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(81:100) fhp(1:80)],'r--') 
    plot(-0.5:1/100:.5-1/100,[fhp(91:100) fhp(1:90)],'r--') 
         cc=get(gca,'children'); 
         set(cc,'linewidth',1.5) 
    hold off 
    grid 
    axis([-0.5 0.5 0 1.1]) 
    title('Input Spectrum and Channel Bandwidths') 
    mm=0; 
    txt=text(0.55,0.5,['Sample # ',num2str(mm,3)]); 
     
    subplot(6,2,3) 
    plt1=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([-0.1501 -0.0499 0  1.1]) 
    text(-0.043, 0.65, 'bin(-1)') 
    text(-0.048, 0.35, '-0.15 -0.05') 
     
    subplot(6,2,4) 
    plt2=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([-0.05 0.05 0  1.1]) 
    text(0.057, 0.65, 'bin(0)') 
     text(0.052, 0.35, '-0.05 +0.05') 
      
    subplot(6,2,5) 
    plt3=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([-0.25 -0.15 0  1.1])  
     text(-0.143, 0.65, 'bin(-2)') 
     text(-0.148, 0.35, '-0.25 -0.15') 
     
     subplot(6,2,6) 
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    plt4=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0.05 0.15 0  1.1]) 
    text(0.157, 0.65, 'bin(+1)') 
    text(0.152, 0.35, '+0.05 +0.15') 
     
    subplot(6,2,7) 
    plt5=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([-0.3501 -0.2499 0  1.1]) 
    text(-0.243, 0.65, 'bin(-3)') 
    text(-0.248, 0.35, '-0.35 -0.25') 
     
    subplot(6,2,8) 
    plt6=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0.15 0.25 0  1.1]) 
    text(0.257, 0.65, 'bin(+2)') 
    text(0.252, 0.35, '+0.15 +0.25') 
 
    subplot(6,2,9) 
    plt7=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([-0.45 -0.35 0  1.1])  
    text(-0.343, 0.65, 'bin(-4)') 
    text(-0.348, 0.35, '-0.45 -0.35') 
     
    subplot(6,2,10) 
    plt8=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0.25 0.35 0  1.1]) 
    text(0.357, 0.65, 'bin(+3)') 
    text(0.352, 0.35, '+0.25 +0.35') 
     
    subplot(6,2,11) 
    plt9=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([-0.55 -0.45 0  1.1]) 
    text(-0.443, 0.65, 'bin(-5)') 
    text(-0.448, 0.35, '-0.45 +0.45') 
     
    subplot(6,2,12) 
    plt10=plot((-0.5:1/100:0.5-
1/100)/10,zeros(1,100),'linewidth',1.5,'erasemode','xor'); 
    grid 
    axis([0.35 0.4501 0  1.1])  
    text(0.457, 0.65, 'bin(+4)') 
    text(0.452, 0.35, '+0.35 +0.45') 
end   
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%hh=remez(169,[0 40 60 500]/500,[1 1 0 0],[1 100]); 
frq=[0 40 60 99 100 149 150 199 200 249 250 299 300 349 350 399 400 449 450 500]/500; 
gn= [1  1  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]; 
pn= [  1   100    140     180     220     260     300     340     380     420]; 
hh=remez(169,frq,gn,pn); 
hh2=reshape(hh,10,17); 
 
reg=zeros(10,17); 
n2=1; 
rr=zeros(1,100); 
yy=zeros(10,n_dat/10); 
yy2=zeros(10,100); 
 
ww2=ones(1,100)/100; 
ww1=kaiser(100,6)'; 
ww1=ww1/sum(ww1); 
     
for nn=1:10:n_dat-10 
  rr=[fliplr(xx(nn:nn+9)) rr(1:90)]; 
   reg(:,2:17)=reg(:,1:16); 
   reg(:,1)=flipud(xx(nn:nn+9)'); 
   for mm=1:10 
      vv(mm)=reg(mm,:)*hh2(mm,:)'; 
   end 
   yy(:,n2)=fft(vv).'; 
   n2=n2+1; 
    yy2=[fft(vv).' yy2(:,1:99)]; 
   if flag2==1 
 
  set(plt0,'xdata',0:99,'ydata',real(rr)); 
  set(plt1,'xdata',0:0.1:9.9,'ydata',real(yy2(10,:))); 
  set(plt2,'xdata',0:0.1:9.9,'ydata',real(yy2(1,:))); 
  set(plt3,'xdata',0:0.1:9.9,'ydata',real(yy2(9,:))); 
  set(plt4,'xdata',0:0.1:9.9,'ydata',real(yy2(2,:))); 
  set(plt5,'xdata',0:0.1:9.9,'ydata',real(yy2(8,:))); 
  set(plt6,'xdata',0:0.1:9.9,'ydata',real(yy2(3,:))); 
  set(plt7,'xdata',0:0.1:9.9,'ydata',real(yy2(7,:))); 
  set(plt8,'xdata',0:0.1:9.9,'ydata',real(yy2(4,:))); 
  set(plt9,'xdata',0:0.1:9.9,'ydata',real(yy2(6,:))); 
  set(plt10,'xdata',0:0.1:9.9,'ydata',real(yy2(5,:))); 
   
else 
  
  set(plt0,'xdata',(-0.5:1/100:0.5-1/100),'ydata',fftshift(abs(fft((rr.*ww1)')))); 
  set(plt1,'xdata',-0.1+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(10,1:nn_dat)/nn_dat,100)))); 
  set(plt2,'xdata',(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(1,1:nn_dat)/nn_dat,100)))); 
  set(plt3,'xdata',-0.2+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(9,1:nn_dat)/nn_dat,100)))); 
  set(plt4,'xdata',+0.1+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(2,1:nn_dat)/nn_dat,100)))); 
  set(plt5,'xdata',-0.3+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(8,1:nn_dat)/nn_dat,100)))); 
  set(plt6,'xdata',+0.2+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(3,1:nn_dat)/nn_dat,100)))); 
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  set(plt7,'xdata',-0.4+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(7,1:nn_dat)/nn_dat,100)))); 
  set(plt8,'xdata',+0.3+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(4,1:nn_dat)/nn_dat,100)))); 
  set(plt9,'xdata',-0.5+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(6,1:nn_dat)/nn_dat,100)))); 
  set(plt10,'xdata',+0.4+(-0.5:1/100:0.5-
1/100)/10,'ydata',fftshift(abs(fft(yy2(5,1:nn_dat)/nn_dat,100))));    
 
end     
 set(txt,'string',['Sample #  ',num2str(n2-1)])  
pause(0.05) 
end 
 
 
 
 


