

Abstract— IEEE 1588 is a standard for precise clock

synchronization for networked measurement and control systems
in LAN environment. This paper presents the design and
implementation of two IEEE 1588 prototypes for Wireless LAN
(WLAN). The first one is implemented using a Linux PC
platform and a standard IEEE 802.11 WLAN with modifications
to the network device driver. The second prototype is
implemented using an embedded WLAN development board that
implements the synchronization functionality using an embedded
processor with Programmable Logic Device (PLD) circuits. The
measured results show that 1.1 ns average clock offset can be
reached on HW based implementation, while Linux PC network
driver enables 660 ns with a standard WLAN. Although WLAN
is an extremely difficult environment for the synchronization, the
results achieved with the prototype are fully comparable to those
achieved with wired LAN implementations.

Index Terms— time synchronization, PTP, IEEE 1588,
WLAN.

I. INTRODUCTION
Clock synchronization is needed in various home, office,

and industrial automation applications. Synchronization
allows transactions between distributed systems to be
controlled on timely basis.

Basically, synchronization accuracy can be improved using
two methods. First, existing hardware can be extended with a
more accurate clock. Second, clocks can be synchronized to
one accurate external clock. This paper focuses on the second
method, which can be considered more cost efficient and
scalable.

Applications in various environments are increasingly built
using Local Area Network (LAN) technologies. IEEE 1588 is
a standard for precise clock synchronization for networked
measurement and control systems in the LAN environment
[1]. The standard defines a Precision Time Protocol (PTP)
developed for synchronizing independent clocks running on
separate network nodes. The standard aims for sub-
microsecond accuracy, while higher accuracy is targeted by
hardware implementation.

Wireless LANs (WLAN) extend wired networks with easier
installation and freedom of movement. They introduce unique
challenges for clock synchronization due to use of wireless
error prone medium and the unpredictable operation of
wireless Medium Access Control (MAC) protocol. The MAC
protocol of IEEE 802.11 WLAN [2] uses contention based

medium access that causes variable delays for packet
transmissions. With a proper design, these inaccuracies can be
avoided and the synchronization accuracy significantly
improved.

The accuracy of a PTP implementation depends mainly on
the accuracy of the timestamps used for synchronization.
Timestamping can be done at the application layer, at an
intermediate protocol, such as IP layer, in a device driver
layer, MAC layer, or in hardware. Different timestamping
methods are presented in Figure 1. Our earlier research [3]
reports the performance of software based IEEE 1588
prototype on Windows platform. It uses only the application
layer approach for timestamping the synchronization
messages.

This paper extends the previous work by a device driver,
and hardware based timestamping methods. The paper
presents two IEEE 1588 prototypes for WLAN. The first one
is implemented using a Linux PC platform and IEEE 802.11b
WLAN adapter, with modifications to the network driver. The
second prototype is implemented using an embedded Altera
Excalibur development board. It implements the
synchronization functionality using an embedded processor
and Programmable Logic Device (PLD) circuits. Altera
prototype is referred as the PLD prototype.

The paper is organized in the following way. Section II
presents the related work on time synchronization with IEEE
1588. Section III gives an overview of the IEEE 1588
standard. Next, Section IV presents both the Linux PC driver
based prototype and the PLD prototype, as well as their design
and implementation. Also, the PLD clock adjustment
algorithm is presented. Section V defines the measurement
arrangements and gives the performance results. The final
section concludes the paper.

Software and Hardware Prototypes of the IEEE
1588 Precision Time Protocol on Wireless LAN

Juha Kannisto, Timo Vanhatupa, Marko Hännikäinen, Timo D. Hämäläinen

Application layer

Network protocol
stack

Application based
timestamping

Hardware based
timestamping

Driver based
timestamping

Physical communication path

Radio
WLAN MAC

Device driver

Windows software
prototype
Measured and
reported in [3]

Linux driver
based prototype

PLD based
prototype

Figure 1. Timestamping methods evaluated in this research.

II. RELATED RESEARCH
An IEEE 1588 prototype with hardware based

timestamping has been presented in [4]. It has been
implemented for Ethernet LAN environment, and measured
with two clocks communicating via a repeater and a switch.
According to the measurements, it has 22 ns average offset
with 9800 ns2 variance on a repeater network, and 49 ns
average offset with 54000 ns2 variance on a switched network.
Although good results have been achieved with the prototype,
it is aimed on wired LAN. Our goal is to reach optimum
accuracy on WLAN and evaluate the affect of different
implementation methods in the WLAN environment.

IEEE 1588 synchronization over IEEE 802.11b with
hardware based timestamping have also been researched by
Pakdaman et al. [8]. There was not enough information
available about the experiment setups and results. Thus,
comparison to our prototypes was not possible.

III. IEEE 1588 OVERVIEW
PTP divides the topology of a distributed system into

network segments enabling direct communication between
PTP clocks. These segments, denoted as communication
paths, may contain repeaters and switches connecting same
LAN technology. Devices connecting communication paths,
such as routers, introduce possibly asymmetric and variable
delay to the communication, and are therefore treated
separately.

On each communication path a single clock is selected as a
master while others are slave clocks synchronizing to it. The
selection is done using the best master clock algorithm
defined in the standard.

PTP messaging between a master clock and a slave clock is
presented in Figure 2. The master clock sends a
synchronization (sync) message once in every two seconds in
a default configuration. The message contains information
about the clock and an estimated timestamp tm1 of the message
transmission time. The clock information contains the
identification and the accuracy of the master clock. When a
slave clock receives the sync message, it stores a timestamp ts1
of the reception time. As it may be difficult to timestamp a
sync message with an exact transmission time, the master
clock can send a follow-up message, which contains a more
precise value for the timestamp tm1.

A slave clock sends periodically a delay request message
and stores its transmission time with a timestamp ts2. When a
master clock receives the message, it sends a delay response
message, which contains the timestamp tm2 of the reception
time of the corresponding request message.

The slave clock calculates the master to slave delay dms and
the slave to master delay dsm according to these timestamps as

11 msms ttd −= , (1)

22 smsm ttd −= . (2)

The slave clock calculates the estimation of the one way

delay dw and the offset from master ofm using the results from
(1) and (2) as

2
smms

w
ddd +

= , (3)

wmsfm ddo −= . (4)

The offset from the master is used to adjust the computer

clock frequency and/or time. As continuous, strictly
increasing time is required, the clock frequency adjustment is
the only possibility.

The accuracy of the PTP system is affected by the variation
of the latencies in PTP messaging. These latencies are
presented in Figure 3. The delay between the timestamping
point and the sending of the first message bit to the medium is
called the outbound latency while the inbound latency is a
corresponding delay for received messages. Inbound and
outbound latencies are affected by the operation of the PTP
clock host computer, mainly by the delay fluctuation in the
protocol stack. The closer the timestamp is taken from the
transmission of the message, the smaller the latency is, and
consequently the accuracy is also better. In the ideal case, the
timestamps are taken in hardware when the message is
actually sent and received, and the inbound and outbound
latencies become zero. Regardless of the timestamping
location, the implementation is required to correct the values
of reported timestamps with the estimation of the
corresponding latencies. The estimation method is outside the
standard scope, but averaging is advised to be used. The
approach that was used in our prototypes is described in the
Section IV.

Transmission latency is the delay in the physical
communication path. It depends on the used transmission
technology and involved devices. For example using Access
Point (AP) or a switch between the PTP clocks may cause
variable transmission latency. This variation should also be
taken into account by the PTP implementation. Practically this
requires averaging of the timestamp values used for the
calculations.

Master Slave

sync (estimated tm1)sync (estimated tm1)
follow-up (precise tm1)follow-up (precise tm1)

tm1 ts1

delay requestdelay request
delay response (precise tm2)

ts2tm2

Figure 2. PTP messaging.

IV. PROTOTYPE IMPLEMENTATIONS
The main differentiating factor between the prototypes is

the method how the timestamping is implemented. The Linux
PC prototype timestamping uses the device driver while the
PLD prototype does the timestamping using hardware.
However, the both prototypes use the following methods for
implementing the synchronization.

The standard defines a follow-up message for sending a
more precise estimate of the transmission time of the sync
message. The follow-up message is used in both prototypes.
The outbound and inbound latencies are estimated to be
constant. This is a preferred method especially in the PLD
prototype, since the latencies are practically zero.

Both client clocks use the timestamps for calculating how
the local clock has to be adjusted to achieve the
synchronization with the master clock. The clock adjustment
is implemented using an algorithm that is similar to the
original algorithm used with the Windows SW prototype. It is
a control algorithm based on the last measured ofm value and
the previous value using the first derivate. Algorithm follows
the ofm values and distributes the adjustment over a time
period to provide continuous time. The algorithm used in the
Windows SW prototype is described in [3].

The performance of the prototypes is evaluated using an
external reference pulse generator. It is connected to a serial
port on both master and slave clocks. This is possible also in
the PLD prototype since the Altera Excalibur development
board contains a serial port with the same functionality as in a
common PC serial port.

When the implementation receives a rising edge on a serial
port Clear-To-Send (CTS) signal, it generates a reference
timestamp. Reference timestamps are values of the local clock
on the trigger event. Thus, they can be used for calculating the
clock offsets. The generator creates approximately one pulse
per second independently from the synchronization process.

A. Linux PC Prototype
Our first prototype is an implementation of the IEEE 1588

standard for Linux PC environment. Figure 4 presents the

prototype architecture. It contains the PTP implementation
module that has been implemented as a user mode application.
The PTP implementation communicates with the peer clock
using the sync, follow-up, delay request, and delay response
messages. The messages are encoded and decoded in the PTP
implementation, and transmitted using UDP/IP packets via the
Sockets Application Programming Interface (API).

In addition to the user mode application, both Ethernet and
WLAN drivers have been slightly modified to generate
timestamps on transmission and reception of PTP
synchronization messages.

The modified network drivers store a timestamp to a
temporary variable when the network adapter raises an
interrupt. The timestamp is stored when the raised interrupt is
rx_frame or tx_done, and the frame contains a sync, a delay
request, or response message. When the PTP implementation
receives the message through UDP/IP protocol stack, it reads
the timestamp from the device driver. Respectively, when the
application needs the transmission time of the last PTP
message, it reads the stored timestamp from the device driver.

The Linux PC prototype measurement setup is presented in
Figure 5. The prototype consists of a master and slave clock, a
reference pulse generator, and a connecting LAN or WLAN
technology.

Network
protocol

stack

Appl.
layer

WLAN
MAC RadioDevice

driver
Appl.
layer

WLAN
MACRadio Device

driver

Sender Receiver

Outbound
latency

Transmission
latency

Inbound
latency

tm1

ts1

Start
TX

Start
RX

Application
layer

Network
protocol

stack

communication path

Radio
WLAN MAC

Device driver

Application
layer

Network
protocol

stack

Radio
WLAN MAC

Device driver

Sender ReceiverNetwork
protocol

stack

 Figure 3. Latencies involved with the PTP messaging.

Ethernet
device
driver

Ethernet
adapter

UDP/IP

Sockets

PTP implementation
Application
(user mode)

Linux API

Hardware

Physical network
Reference

pulse generator

Message
timestamping
in a device

driver

WLAN
device
driver

WLAN
adapterSerial port

Serial
port
driver

Device I/O

Figure 4. Architecture of the Linux PC based prototype.

B. PLD prototype
Our second prototype is implemented using an Altera

Excalibur EPXA1 [5] embedded development board. The
prototype is presented in Figure 6. The board contains an
ARM9 processor and PLD that are connected by AMBA Bus
(AHB) and dual-port memory. A 2.4 GHz MAC’less Intersil
HW1151-EVAL radio transceiver [6] is connected to the
development board with an expansion header. The transceiver
contains only the radio implementation and on the radio
interface it is fully compatible with the IEEE 802.11b
standard. This corresponds to a situation where the WLAN
adapter manufacturer would implement the PTP functionality
in a standard WLAN adapter.

On PLD, custom hardware accelerators and interfaces to
access external devices have been implemented using VHDL.

Figure 7 shows the PLD prototype functional architecture.
An adaptation layer has been implemented below the PTP
implementation module for necessary changes for porting the
implementation to the ARM9 environment.

The WLAN MAC protocol runs also in the ARM9
processor. The used MAC protocol is a test version of
TUTMAC that is a research based custom WLAN protocol
[7]. Although it is not an IEEE 802.11 MAC, it does not affect
the results since the timestamping is done below the MAC
layer. This corresponds to a situation where Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA)
mechanism in IEEE 802.11 MAC waits until the medium is
free and sends the packet. Because timestamping is done after
the MAC layer, the packet has a correct timestamp regardless
of the medium access waiting time. Moreover, even a packet
collision and retransmission does not cause inaccuracy to the
results with the PLD prototype. The retransmitted packet is
simply timestamped again instead of using the old timestamp.

The timestamping is implemented on PLD with three
modules: the message timestamping, counter L, and reference
pulse timestamping. Additionally, a counter C is used when
adjusting the local clock frequency.

The message timestamping has a direct read access to the
interface signals from the radio. The radio gives a signal about
transmitted and received messages between the last preamble
bit of the frame header and the first data bit using the
TX_RDY signal on transmission and the RX_RDY signal on
reception. When TX_RDY or RX_RDY signal is set, the
module stores the value of the counter as a timestamp. This is
precisely the point where timestamp should be taken
according to the standard.

The counter L is the local clock of the prototype. It consists
of two counters, one 32 bit counter for seconds and another 32
bit counter for nanoseconds.

Reference pulse timestamping is used for measuring the
prototype performance. It receives pulses from the external
reference pulse generator, and creates timestamps by reading
the counter value. Timestamps are given to the PTP
implementation module that sends them to an analyzer PC
using a RS232 terminal connection. Reference pulses are not
used by the PTP implementation for synchronization in any
way. They are simply used for measuring the accuracy of the

Linux PC
slave clock

Linux PC
master clock

Ad-hoc WLAN

Reference pulse
generator

WLAN
AP

Direct cable

Switch

Repeater

Figure 5. Linux PC prototype topology and measurement arrangements.

MAC’less
radio tranceiver

Serial ports for the
reference pulse generator

and analyzer PC
Excalibur chip with
ARM9 & PLD logic

Figure 6. PLD prototype implemented with Altera Excalibur EPXA1
development board.

PLD

Reference pulse
timestamping

Reference
pulse
generator

ARM9

MACless Radio
2.4 GHz

PTP implementation

Radio Interface

TUTMAC

Message
timestamping

Adaptation Layer

Analyzer
PC

Terminal
connection

Altera Excalibur EPXA1

Counter C

Counter L: s, ns

Figure 7. Architecture of the PLD prototype including the reference pulse
generator and the analyser PC used for measurements.

prototype implementation.
The prototype topology and test arrangements are shown in

Figure 8. The reference pulse generator triggers the PLD
implementation to create a reference timestamp. The analyzer
PC is connected to both clocks via RS232 connection. It
collects the reference timestamps and clock values to calculate
the accuracy of the prototype.

V. MEASUREMENT RESULTS
Two laptop PCs and two embedded development boards

were used in the measurements. Test equipment details are
presented in Table I. Both laptop PCs were equipped with
10/100 Mbit/s Ethernet NICs and 11 Mbit/s 802.11b WLAN
adapters. In Linux measurements, the 500 MHz laptop was
used as a master clock and the 700 MHz laptop as a slave
clock. The development boards were equipped with 11 Mbit/s
WLAN transceiver radio cards that do not include the MAC
protocol.

In each test run, the clocks were first set to different times.
The length of each test was about 15 minutes on Linux and
ten minutes on PLD. At first, about 5 minutes was needed
before the slave clock is stabilized, depending on the original
clock offset. The reference timestamps generated before the
slave clock was stabilized were ignored. The rest of the
corresponding timestamps were compared and the difference
of each timestamp pair was calculated. The clock offset for a
single test run is defined as the average of the timestamp
differences. Each test run was repeated 10 times. The average
offset presented in the results for a set of test runs is the
average value of the 10 test run offsets, and the variance is the
corresponding variance of the test run offsets.

The long stabilization time for the slave clock is caused by
the averaging used for minimizing the affect of variation in
inbound, outbound, and transmission latencies, as well as the
fact that the clock adjustment algorithm is implemented to
adjust the clock slowly. This way the adjustment algorithm is
more stable during the normal operation. Generally, the
required stabilization time depends mainly on the amount of
variation in the latencies. Thus, the required time is shorter for
the PLD implementation. It would also be possible to shorten
the stabilization time to a less than a minute. The limiting
factor is the learning of the master clock frequency because it

requires several sync and delay messages to be transmitted
between the clocks.

Five transmission technologies were used to analyze Linux
PC implementation accuracy. The used technologies were
direct Ethernet cable, repeater (hub) network, switched
network, ad-hoc WLAN, and WLAN AP. The PLD
implementation accuracy was analyzed on ad-hoc WLAN
topology.

The achieved accuracy of the Linux PC prototype with each
technology was evaluated according to measurement
arrangements presented in Figure 5. The results of each test
run are presented in Figure 9. According to the measurements,
the average offset reached using a direct cable connection was
1.8 µs while the variance was 0.7 µs2. A repeater network is
almost as accurate as the direct cable connection with 1.9 µs
average offset and 0.1 µs2 variance. A switched network
enables 0.95 µs average offset with 0.3 µs2 variance.

In WLAN, the ad-hoc operation enables 0.66 µs average
offset with 0.2 µs2 variance. The WLAN AP enables the
average offset of 4.6 µs with 2.5 µs2 variance.

Summary of the results is presented in Figure 10. For
comparison, it also contains the previous Windows software
measurements reported in [3]. Although different operating
systems were used, both setups were measured using the same
laptop PCs. The accuracy of all setups has increased several
microseconds with the driver based timestamping, except for

Slave clockMaster clock

Ad-hoc WLAN

Reference pulse
generator

Reference pulse
generator

PLD
prototype

PLD
prototype

Analyzer PC for
measurementsTerminal

connection

Figure 8. PLD prototype topology and measurement arrangements.

TABLE I. TEST EQUIPMENT.

Equipment Description

Laptop PC 1 Intel Pentium III 500 MHz WinXP
Laptop PC 2 Intel Pentium III 700 MHz WinXP
Direct cable 10 Mbit/s half-duplex
Repeater 10 Mbit/s MIL-4710H half-duplex
Switch 100 Mbit/s Cisco Catalyst 3500 Series XL full-

duplex
WLAN AP 11 Mbit/s Nokia A020 802.11b WLAN AP
WLAN adapter 11 Mbit/s Nokia C110 802.11b
Development board Altera Excalibur EPXA1 Development board
Radio on PLD Intersil PRISM MAC’less Radio

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10
Test number

O
ffs

et
 (µ

s)

Direct cable
Repeater
Switch
AdHoc
AP

Figure 9 Achieved offsets for the Linux PC prototype with different LAN
technologies.

the AP setup. It shows that when AP is involved, most errors
come from the delay variation in AP instead of the outbound
and inbound latencies.

The PLD implementation accuracy was evaluated according
to the test arrangement shown in Figure 8. It uses an ad-hoc
WLAN between the master and slave clock. The result is
shown in Figure 11. According to the measurements the
reached average offset was 1.1 ns with 3.1 ns2 variance. The
synchronization accuracy is almost three decades better than
with Linux PC implementation. The extremely high accuracy
of this prototype results mainly from reducing the outbound
and inbound latencies using hardware for the timestamping.
The use of ad-hoc topology also reduces the variation in the
transmission latency, since there are no additional devices
involved.

Usage of WLAN AP between the clocks would increase the
variation in the transmission latency and decrease the
accuracy. However, in [3] we presented a method called
external echo that was used to completely remove the
inaccuracy caused by AP. This method is based on the normal
operation of an IEEE 802.11 WLAN AP. When the master
clock sends a message to the slave, it is first transmitted to AP
and AP transmits it to the slave. However, each transmission
from the AP to the slave can also be received by the master
clock because both use the same IP multicast address. The
master clock takes a precise timestamp for the sync message
from the reception of the frame send by AP. The precise
timestamp is transmitted with the follow-up message.
Combining the hardware implemented timestamping and the
external echo method can be used to implement nanosecond

accuracy also in the WLAN AP topology.

VI. CONCLUSIONS
Two IEEE 1588 prototypes for WLAN were presented in

this paper. The first one was implemented using a Linux PC
platform and timestamps the synchronization messages in the
device driver. The second prototype was implemented using
an embedded development board and hardware based
timestamping. The accuracy of the prototypes was measured
in different setups and compared to previous work with
software based timestamping prototype.

According to the results, the microsecond accuracy
achieved by the network device driver based timestamping
can be further increased to nanosecond level by implementing
the timestamping with hardware. Timestamping below the
MAC protocol effectively reduces the measurement errors
caused by the master and slave clock implementation even in
the WLAN environment and significantly improves the
synchronization accuracy. Only significant error source left is
the network devices between the clocks.

Combining the hardware based timestamping and a method
for removing the accuracies caused by AP is left for the
further development. Nanosecond scale accuracy enables the
implementation of time critical applications also using WLAN
as a transmission medium. Since the time critical applications
are increasingly implemented using wireless technologies, it is
essential that also WLAN device manufacturers would
implement the PTP functionality in their products.

REFERENCES
[1] IEEE std. 1588-2002 “IEEE Standard for a Precision Clock

Synchronization Protocol for Networked Measurement and Control
Systems”, 2002

[2] IEEE Std 802.11-1997 “Wireless Lan Medium Access Control (MAC)
And Physical Layer (PHY) Specifications”, 1997

[3] Juha Kannisto, Timo Vanhatupa, Marko Hännikäinen, Timo D.
Hämäläinen, ”Precision Time Protocol Prototype on Wireless LAN”,
International Conference on Telecommunications (ICT 2004), August 1-
6, 2004, Fortaleza, Ceara, Brazil, pp. 1236 - 1245.

[4] Eidson, J.C.; Kang Lee, “Sharing a common sense of time”,
Instrumentation & Measurement Magazine, IEEE , Volume 6, Issue 1,
March 2003, pp. 26 – 32

[5] Altera Corporation, [Online], Available: http://www.altera.com
[6] Intersil, 2.4GHz 11Mbps MACless DSSS Radio HW1151-EVAL,

[Online], Available: http://www.intersil.com
[7] Petri Kukkala, Väinö Helminen, Marko Hännikäinen, Timo Hämäläinen,

”UML 2.0 Implementation of an Embedded WLAN Protocol”, IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’2004), 2004

[8] A. Pakdaman, J. Eidson, T. Cooklev, "IEEE 1588 over IEEE 802.11b",
IEEE 802.11 interim meeting, Berlin, Germany, Sept. 2004, [Online],
Available: http://www.ieee802.org/11/DocFiles/04/11-04-1080-00-
0wng-ieee-1588-over-ieee-802-11.ppt

0 1 2 3 4 5 6 7 8 9

Direct cable
Repeater

Switch
Ad-hoc

AP
Direct cable [3]

Repeater [3]
Switch [3]
Ad-hoc [3]

AP [3]

Average offset (µs)
Variance (µs²)

Figure 10 Summary of the Linux based prototype measurements compared
to measurements in [3].

0 1 2 3 4 5

EPXA1

Average offset (ns)
Variance (ns²)

Figure 11 The PLD based prototype results.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

