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Iterative Frequency Estimation by Interpolation on
Fourier Coefficients
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Abstract—The estimation of the frequency of a complex expo-
nential is a problem that is relevant to a large number of fields. In
this paper, we propose and analyze two new frequency estimators
that interpolate on the Fourier coefficients of the received signal
samples. The estimators are shown to achieve identical asymptotic
performances. They are asymptotically unbiased and normally dis-
tributed with a variance that is only 1.0147 times the asymptotic
Cramér-Rao bound (ACRB) uniformly over the frequency estima-
tion range.

Index Terms—Digital signal processing, frequency estimation,
parameter estimation.

I. INTRODUCTION

N this paper, we consider the estimation of the frequency of
a complex exponential s, which is given by
s(k) = AeIPT™R ] (k)

k=0,1...N—1 (1)

where A is the signal amplitude, f the signal frequency, and
6 the initial phase. N samples are used, and the sampling fre-
quency is f,. The noise terms w(k) are assumed to be zero
mean, complex additive white Gaussian noise with variance o2,
The signal to noise ratio (SNR) is given by p = A2/a% We
set, without loss of generality, A = 1 and f; = 1. Although
the noise is assumed to be white Gaussian, the derivation of
the asymptotic properties of the estimators holds under weaker,
more general conditions. These relaxed conditions are stated in
[1] for the case of real-valued noise. However, their extension to
the complex case is straightforward and is not explicitly carried
out here. The results obtained in this paper are easily extended
to the more general case by replacing o2 with the power spectral
density of the noise at the frequency of interest.

The frequency estimation problem outlined above is relevant
to a wide range of areas such as radar, sonar, and communica-
tions and has consequently received significant attention in the
literature [2] and [3]. It is well known that the maximum likeli-
hood (ML) estimator of the frequency is given by the argument
of the periodogram maximizer [4]. That is

fan, = arg max {Y/(A)} (2a)
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where
(2b)

The Cramér—Rao bound (CRB) of the frequency estimates is
given by [4]

. 612
77T @r)?pN(N2 - 1)’

3
For N > 1, the asymptotic CRB (ACRB) becomes

T
f (2m)2pN3

The numerical maximization of (2) is not a computationally
simple task and may suffer from convergence and resolution
problems [1]. Therefore, it is common to estimate the frequency
of a sinusoid by a two-step process comprising a coarse esti-
mator followed by a fine search [4]-[10]. The coarse estimation
stage is usually implemented using the maximum bin search
(MBS) as a coarse approximation of the periodogram maxi-
mizer [11]. This consists of calculating the N-point FFT of the
sampled signal and then locating the index of the bin with the
highest magnitude.

Various fine frequency estimators have been proposed in the
literature. Zakharov and Tozer [7] present a simple algorithm
that consists of an iterative binary search for the true signal fre-
quency. However, they found it necessary to pad the data with
zeros to a length of 1.5V in order to approach the CRB. Further-
more, the required number of iterations depends on the resolu-
tion as well as the operating SNR and can be quite large. Quinn,
in [1], [5], and [6], proposes a number of estimators that inter-
polate the true signal frequency using the two discrete Fourier
transform (DFT) coefficients either side of the maximum bin.
These algorithms, however, have a frequency-dependent perfor-
mance that is worst for a signal frequency coinciding with a bin
center. This results in a degradation in performance when they
are implemented iteratively [10, ch. 5].

In this paper, we present two new frequency estimators that
belong to a family of interpolators amenable to iterative im-
plementation [10, ch. 6]. The first algorithm, which is denoted
Algl, employs an error functional independently suggested in
[10, pp. 129] and [12]. It uses two complex DFT coefficients
calculated midway between the standard DFT coefficients. The
second algorithm, known as Alg2, was suggested in [10, pp.
137] and works on the magnitudes of the DFT coefficients. We
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analyze the new algorithms and show that they have an asymp-
totic variance that is only 1.0147 times the ACRB. The theoret-
ical results are then verified by simulation.

The paper is organized as follows: In Section II, we present
the details of the frequency estimators including the motivation
behind them. In Section III, we proceed to analyze the algo-
rithms and derive their asymptotic performances. The conver-
gence properties are also discussed. Section IV shows the simu-
lation results, whereas Section V gives the concluding remarks.

II. ITERATIVE FREQUENCY ESTIMATOR

The algorithms are summarized in Table I. The coarse search
returns the index My of the bin with the largest magnitude. Two
DFT coefficients at the bin edges are then calculated and used
to interpolate the true frequency. The motivation behind each
algorithm is easily seen by examining the noiseless case.

Assuming that 7y is the index of the true maximum, i.e.,
mpy = my, the frequency of the signal can be written as

my + 0w
N

where 0y is a residual in the interval [—0.5,0.5]. The subscript
N indicates the dependence of the various parameters on N. In
the rest of the paper, unless the dependence on N needs to be
emphasized, we drop the subscript for the sake of simplicity of
notation. The goal of the estimator is then to obtain an estimate
of 8, say, 5. Consider the DFT coefficients

f = fs “4)

tp

N1 _
X, = Z s(k)e I3k N
k=0

p = £0.5. (5)

Substituting the expression of the sinusoidal signal into (5) and
carrying out the necessary manipulations, we obtain

j27é
_ i 1+e

. 5
1— e]27'r—NP

X

p + W, (©)
where the terms W, are the Fourier coefficients of the noise.
Now, for (6 — p) < N, (6) becomes

5
X, = bm +W, 7)

with b given by
j2ms
b = —Neje—l + eJ
j2mh

At this point, we ignore the noise terms and proceed to examine
the interpolation function of the proposed algorithms. Denote
the ratio in the expression of h(6) in Algl by (. Substituting
the expressions for X, into 3 and simplifying yields

5 5
8= b5—0.5 + b5+0.5
- 5 5

bs—o.s - b5+0.5
=26.

Hence, 6 = (/2 can be used as an estimator for the residual
frequency 6. However, as we will see in Section III-A, it is nec-
essary to take the real value of ( in order to obtain a real-valued
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TABLE 1
ITERATIVE FREQUENCY ESTIMATION BY INTERPOLATION ON FOURIER
COEFFICIENTS ALGORITHM

Let S=FFT(s)and Y(n) =|S(n)|?2, n=0...N —1
Find 1 = argmax{Y(n)}
n

Set 80 =0
Loop: for each i from 1 to @ do

N-1 ) A8, _1+p
O P s
~ ~ k:O A
0; = 0i—1 + h(0;—1)
where

h((gi_l) = %Re {

or

p==£0.5

Xos5+ X_o05

} , for Algl
Xos5—X-05

2 _ 1[Xo.5| — [X—0.5]

h(di—1) = —— for Alg2
(6:-1) 2 | Xo.5] + | X—o0.5 or e

Th-}-SQ
N

Finally f = fs

estimate of 0. In a similar way, the motivation behind Alg?2 is
established as follows; the magnitude of X, is

1
X, = —.
1,1 = ol 5

Since |6] < 0.5, the error mapping for Alg2 becomes

1168|555 — |b5|0.51+§

= =0
2 |bé] 0.5675 + |b5|0.§+5

Again, we find that 5= h(6) can be used as an estimator for
6. Note that the bias resulting from the approximation used in
going from (6) to (7) is of order N ~2. In the following section,
we examine the noise performance of the estimators. We show
that they are asymptotically unbiased and normally distributed.

III. THEORETICAL ANALYSIS
A. Asymptotic Performance

The motivation behind each estimator was established in the
previous section by examining the noiseless case. We will now
include the noise terms and derive the asymptotic properties of
the estimates. We adopt an analysis strategy similar to that used
in [1] and show that both algorithms are asymptotically unbiased
and normally distributed.

In the case that the noise is assumed Gaussian, the Fourier co-
efficients of the noise terms are independent zero mean Gaussian
with variance N o2. However, it was shown in [13] and [14] that,
given the relaxed assumptions mentioned in the introduction, the
noise Fourier coefficients converge in distribution, and

W
hmsupsupM <1,

N1o N almost surely.
A n

N —oo

Thus, the terms W), are O(

see [15, pp. 421-428]).
Now, we have thatas N — oo, [y —m | < 1 almost surely

(a.s.), [1]. In fact, we can show that for |§] < 0.5, P{my =

N In(N)) (for the order notation,
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mN} —lasN — OC.If6:0.5,P{mN :m} :P{mN =
m + 1} = 0.5 a.s., and either bin is an acceptable choice. The
same argument applies for § = —0.5. Thus, as N — oo

Nf
fs
Turning our attention to Algl and substituting the expression

for X,,, which is shown in (7), into 3 yields, after some simpli-
fications

O =my — € [—0.5,0.5] a.s.

5 26 + %(Wo.s +W_os)
1+ 2205 (Wo 5 — Wog5)

®)

Since W, are O(y/NIn(N)) whereas b is O(N), the
term involving 6 in the denominator of (8) is of order
O(N~1/2)/In(N)). Hence, for large N

52— 0.25
B = {25 + Td(Wo.s + W0.5)}
2 _ 25
« [1 _ %(WM —W_p5)+O(N~'In N)} o)

Expanding and simplifying yields

2 - —_— =
p=2+ Pk { (1= 20)Wos+ 1+ 26)W_0_5}
482025 [ (1= 20)Wos+ (1+26)Woos
6 b

where Re{e} and Im{e} are, respectively, the real and imagi-
nary parts of e. We clearly see that the real part of (3 is a noisy
estimate of 0. This clarifies the use of the real part of (3 as an
estimator for 4. Thus, we set 6 = (1/2)Re{3}. In fact, taking
the real part asymptotically improves the estimation variance
by 3 dB. Equation (10) implies that the distribution of 5 asymp-
totically follows that of the noise coefficients W),. Hence, 5 is
asymptotically unbiased and normally distributed. The asymp-
totic variance of the estimator is given by

(62 — 0.25)

1 2
AT {(1 = 26)*var [Re{W{.5}]

var[d] =
+(1 4 26)*var [Re{W_¢ 5}]}

_10%7%(6% - 0.25)°(46> + 1)
4N cos?(md)

(1)

where the second equality follows from the fact that, under the
Gaussianity assumption var[Re{Wy 5}] = var[Re{W_q5}] =
No?/2, and

2 5)
2 _ Nzcos (m
10| )T

The performance of Alg2 can be obtained in a similar fashion.
LetY, = |X,|. Thus

12)

)
o—p

—-Pp
b

Yp:‘b H1+5 W, . (13)
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The second factor in the above expression can be expanded as

follows:
(6—]7)2 6_p W)
=4/14+ "2 |W, |2 —2——R P L.
\/+ ez Wl 5 D

(14)
Upon examination of the two terms under the square root, we
find that their relative orders change as |6 — 0.5. This leads
us to divide the interval [—0.5,0.5] into two regions—A; and
As—defined for some a > 0 and v > 0, as shown:

b-p
bs

’1+ W,

Ay = {616 <05—aN""} (15)

and

Ay = {6;0.5—aN ¥ < || <0.5}. (16)
For § € Aj, Re{W,/b} is of order O(N~(*/2)/In N),
whereas |W,/b|?> is O(N~11n N). Therefore, ignoring the

lower order term involving |W,|? and using the fact that for
< 1,V/1+x=1+x/2+ O(2?), we obtain

B ) _6—p %
Yp_‘b—(s_p [1 — Re{ ; H+o(1). (17)

Substituting Y}, into the error mapping for Alg2 and carrying out
the analysis in a similar way as was done for Algl, we find that

162 —0.25 5
_w {(25 —1)Re { VV(?-O }

2 4
+(26 + 1)Re{Wb°-5 H . (18)

§=6+

This result is similar to the estimator expression of Algl ob-
tained by taking half the real part of (10). In fact, for § € Ay,
the performances of the two algorithms are statistically equiv-
alent since b is a complex constant and does not affect the sta-
tistics of the noise coefficients W,,. Now, turning our attention
to region A,, we find that the estimator is biased. We consider
here the case where 6 — 0.5, and the other case is similar. As
6 — 0.5, the orders of the terms in the expression of Yj 5 are
preserved. However, looking at Y_ 5, we find that there is a
value of § close to 0.5, after which, the term in [W_g 5|? starts
to dominate that in Re{W_g 5}. The estimator then becomes
biased since E[|W_¢5|?] # 0. We take this value of § to be
the boundary between regions Aj; and As. Let ¢ = 0.5 — 6.
Now, the term involving |W_g 5|? is of order O(¢ 2N =1 1In N),
whereas thatin Re{W_g 5} is O(("* N~(1/2){/In N). As a def-
inition, we take a quantity () to dominate another quantity 1
if Q1/Q2 = o(1). A function that satisfies this requirement
is ¢ = 1/vIn N. Note that this choice of ¢ is arbitrary, and
any other function that is o(1) could have been used. Using this
definition, we find that the term in |W_g 5|?> dominates that in
Re{W_g.5} when ¢ = N—(1/2) Thus, the boundary between
Ay and A, is given by 0.5 — N—(1/2)_ The resulting bias of
the estimator for 6 € A is O(ln N). On the other hand, the
width of region Ay is o( N~(1/2)), As A, vanishes faster than
the growth rate of the bias, the asymptotic result of region A
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holds, and the algorithm is asymptotically unbiased with a per-
formance that is identical to that of Algl.
Finally, we have the following theorem.
Theorem 1: Let by be given by the error functionals of Algl
or Alg2 (with §iy € Aj for Alg2), and let f be defined as
2 i + oy

fN = Tfs

Then, o~1(f — f) is asymptotically standard normal with o
given by

a2 T - 0.25)°(462 + 1)
4N3p cos?(md) '
A useful indicator of the algorithm performance is the ratio
of its asymptotic variance to the ACRB. This is
T (862 — 0.25)%(46% + 1)
R=—
6 cos?(md)

19)

The error functionals are then seen to have identical perfor-
mances. The ratio of the variance of the estimates, for SNRs
above the threshold, is dependent on ¢ but independent of the
SNR. Furthermore, it has a minimum of 1.0147 for 6 = 0.

B. Iterative Implementation

In the previous section, we showed that the performance of
the interpolation functions of both estimators depend on the true
signal frequency. The iterative procedure of Table I reduces this
frequency dependence and improves the performance of the al-
gorithm. The estimate of the residual obtained at each iteration
is removed from the signal and the estimator reapplied to the
compensated data. In this section, we show that the estimators
are well behaved and the procedure converges in two iterations.
This allows for a computationally efficient algorithm with a per-
formance that is only marginally above the CRB.

We will only consider the iterative estimator constructed
using Algl. A similar argument can be constructed for Alg2
[10, pp. 194-199]. Let the true value of the residual be denoted
by 6o. Now, h(6) can be written as

sin (37 (60 — 0))

") = (E)
N

[1+0(N"3VRN)]. @0

Expanding h(6) into a Taylor series about &y gives

B(8) = (6 — 8o)l'(8) [1+ 0 (N"HVInN)] )
where
W (89) = — #(%) [1+0 (N #VinN)]
- _1+0(N—%\/ﬁ). 22)
The estimation function 9 (§) = § + h(8) becomes
$(8) = 8o + (6 — 60)0 N—%\/ﬁ) . (23)
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Now, for any 61,62 € [—0.5,0.5], we have

[Yp(81) = 1(62)| =61 — 62O (N‘%\/—lnN)
S Oé|(51 — 62|

with a < 1. Thus, the iterative procedure constitutes a contrac-
tive mapping on [—0.5,0.5]. It also has a unique fixed point at
80. That is, 1 (89) = 69. Consequently, the fixed point theorem
[16, pp. 133] ensures that the algorithm of Table I converges to
the fixed point. The residual input to the algorithm at the ith it-
eration is 8o — 6;—1 . Let the variance expression of the estimator,
which is shown in (11), be denoted by g(8). The variance of the
estimate &; at the " iteration is given by g(o — Si_l). Thus,
the limiting variance of the estimator is

var[boo] = lim g(60 — 8i—1)
=9(0)

where the last result follows from the fact that lim;_, .o Si = bo
and g(6) is continuous on [—0.5,0.5]. Now, we turn our attention
to the stopping criteria. The CRB for §, which is O(N~(1/2)),
forms a lower bound on the estimation variance, and no further
gain is achievable once the residual frequency is of order lower
than it. Therefore, it is reasonable to stop the estimator once the
residual is o( N~(1/2)), Let this iteration number be Q. Starting
with an initial estimate 50 = 0 and using (23), the estimate after
the first iteration 67 is given by

51 =do [I-I-O (N_%\/ﬁ)}

(24)

and the residual is 6, — 8o = O(N~/2)y/In N). This is still
of order higher than the CRB. Looking at the estimate after the
second iteration, we have

by =60 [L+O(N~'InN)] (25)
and the residual is 6, — § = O(N~'In ), which is now
o(N~(/2). Thus, only two iterations are needed for the
residual to become of lower order than the CRB. We say that
the algorithm has converged after two iterations. These results
are summarized by the following theorem.

Theorem 2: The iterative procedure defined using Algl or
Alg2, as shown in Table I, converges with the following prop-
erties.

. The fixed point of convergence is the true offset .

. The procedure takes two iterations for the residual
error to become o( N~ (1/2)),

. The limiting ratio of the variance of the estimator to the

asymptotic CRB is 7 /96 or 1.0147 uniformly over the
interval [—0.5,0.5].
At this stage, we note that, as mentioned in the introduction,
the results derived in this paper are valid under the more general
and relaxed noise assumptions stated by Quinn [1].

IV. SIMULATION RESULTS

The algorithms presented above were implemented and sim-
ulated. The number of samples used in the simulation was N =
1024. Fig. 1 displays the theoretical and simulation results on
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— Alg1: Simulation Curve, Q=1
—— Alg2: Simulatiojn Curve, Q=1 ]
—A— Alg1: Simulation Curve, Q=2
—&— Alg2: Simulation Curve, Q=2
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W a~ [3)

N

Ratio of Estimator Variance to Asymptotic CRB

0 . . . . . . . . .
-05 -04 -03 -02 -0.1 0 0.1 0.2 03 0.4 05
Offset From Bin Center, &

Fig. 1. Plot of the ratio of the variance of the Algl and Alg?2 to the asymptotic
CRB as a function of 8, which is the frequency offset from the bin center.
Simulation curves for one and two iterations are shown. The theoretical curve
is also displayed. There were an average of 10000 runs at an SNR of 0 dB.

o
©

—— Cramer—Rao Bound Curve
—— Alg1: Simulation Curve, Q=2
—o— Alg2: Simulation Curve, Q=2

o

1
)

quency Estimates (Hz)
o

)
&
T

(=}

Standard Deviation of Fre
o

-20 -18 -16 -14 12 -10 -8 -6 -4 -2 0
Signal to Noise Ratio (dB)

Fig.2. Plot of the standard deviation of the frequency estimation error for Algl
and Alg2 as a function of the SNR. The CRB curve is also shown.There were
an average of 10000 runs at each SNR.

the ratio of the variance of the estimates to the ACRB versus ¢
for one and two iterations. The SNR for this simulation was set
to 0 dB. We see that for () = 1, the simulation and theoretical
results agree closely. For Alg2, the boundary between regions
Aj and A, is clearly visible. The plot also shows that after the
second iteration, the performance of both algorithms is uniform
over the entire interval. The ratio of the variance of both estima-
tors is, as expected, very close to the theoretical value of 1.0147.
Fig. 2 presents the simulation results of the noise performance
of both algorithms as a function of the SNR. The CRB curve is
shown for the purpose of comparison. Both algorithms exhibit
almost identical performances that are on the CRB curve. The
threshold effect that is characteristic of the ML estimator, and
results from the coarse estimation stage, is visible.
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V. CONCLUSION

In this paper, we have proposed and analyzed two new esti-
mators for the frequency of a complex exponential in additive
noise. The estimators consist of a coarse search followed by a
fine search algorithm. The coarse search is implemented using
the standard Maximum Bin Search. Two new fine search algo-
rithms have been proposed and their asymptotic performances
derived. The estimator were implemented iteratively and the
resulting procedure shown to converge to the true signal fre-
quency. The estimation variance of the iterative algorithm was
also shown to converge asymptotically to its minimum value.
This results in an improvement in the performances of the esti-
mators when implemented iteratively. The number of iterations
required for convergence was found to be 2 for both algorithms.
Hence, the iterative estimator has a computational load of the
same order as the FFT. Finally, the theoretical results were ver-
ified by simulations.
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