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Abstract: The paper considers the maximum likelihood (ML) estimation of the frequency offset of a
knewn signal reccived in a multipath channel. The ML algorithm and the Cramer—Rao lower bound
are derived. An estimator possessing low computational load is proposed whose accuracy
performance is close to that of the ML estimator over a wide frequency acquisition range.

1 Introduction

We consider the problem of estimating the frequency offset
of a known signal received in a multipath channel. This has
been addressed in recent publications {1, 2]. In [1] the broad
problem has been considered where distinct paths introduce
different frequency offsets to the signal received by an array
of antennas. The proposed estimators, however, possessed
a limited frequency acquisition range. In [2] an autocorrela-
tion-based frequency estimator was proposed for diversity
signals, assuming identical frequency offsets in different
paths. Such a scenario corresponds to the case where oscil-
lators in the transmitter and the receiver generate different
reference frequencies with unknown frequency shift; at the
same time, the frequency shift due to the Dappler effect is
negligible. The estimator proposed in [2] also has a narrow
frequency acquisition range.

We also consider the scenario where all the paths have
the same frequency offset and the signal is received by one
antenna. However, the problem is solved without any
constraints upon the frequency offset. We derive the maxi-
mum likelthood (ML) frequency estimation algorithm and
propose an approximation intended for real-fime imple-
mentation. The proposed estimator is based on a coarse
and fine search of the periodogram peak {3]. We also derive
the Cramer—Rao lower bound (CRLB) for this case. Simu-
lations show that the accuracy of the proposed algorithm is
close to that of the ML frequency estimator for any signal-
to-noise raiio (SNR} over a wide frequency acquisition
range.

2  Signal model

Using complex-envelope notation, the observed signal can
be modelled as

z(t) = A(t)e?™ +nlt)  te[0,T] (1)
where @y is an unknown frequency offset and 7T is the
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signal duration. The additive complex white zero-mean
Gaussian noise #(f) has variance o = E{n())n"(7)}, where
E{} denotes the statistical expectation and ()" denotes the
complex conjugate. The complex envelope A() can be
represented as

Alt) :f h(u)s(t — u)du
where s(f) is the transmitted signal and /(¢) is a channel
impulse response
M
A(t) =D amd(t — Tm) (2)

m=l1

where M is a number of paths, {z,,} ML, are delays of the
paths, {a,}M | are complex-valued path amplitudes, and
&¢) is the Dirac delta function. Then the complex envelope
A(¢) can be represented as

M

AW =Y tnpnlt) (3)

m=1
where (Pm(f) = ‘5.(1 - ‘m)'

We consider scenarios where the waveform s(¢) is known,
l.e. a training sequence is transmitted for estimating the fre-
quency offset. In some cases, the delays {t,}, can be
estimated before the frequency estimation [4, 5]. If the
delays are known, eqn. 3 1s a linear combination of known
basis functions {g, (N} M . Then we have a sct of linear
parameters {,} 47, and a nonlinear parameter @ to be
estimated. Note that instead of the representation given in
eqn. 2, a Fourier-series expansion of the channel impulse
response /(f) can also be used

M
R(t) =Y amipm(t) (4)
m=1
where {y, (0} 4, is a basis of linearly independent func-
tions. Eqn. 4 is useful in channels with a time dispersion of
discrete paths, for example, in underwater acoustic chan-
nels [6]. Then egn. 3 holds if

wm(t) = /_Do P (u)s(t — w)du

If, however, the delays are unknown we have a statistical
problem with the time delays and frequency offset as
unknown nonlingar parameters; the solution of this prob-
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lem is difficult to implement. To simplify it, we can exploit
the canonical channel representation which states that the
received signal can be represented arbitrarily accurately in
terms of uniformly spaced multipath delays and Doppler
shifts [6, 7). In this case, the complex envelope is a linear

combination
L 12}
A(f}%z Z hktu“
I=0 k=

of a set of canonical basis waveforms

upalt) = s (t - é) exp(y27kt/T)

that are fixed a priori and do not depend on the actual
physical delays and Doppler shifts; here B is the bandwidth
of the waveform s(1), L. = T,B, D = TBy, T,, and By, are
the multipath and Doppler spread, respectively. Eqn. 3
holdsif M= Q2D+ 1YL + 1}, m=(L + Dk + 1 a,=h,
and ¢,(f) = w (7). In particular, for a zero Doppler spread
(D = 0) we have q,(r) = s(t ~ n/B).

Thus, the model (eqn. 3) of the complex envelope is usc-
ful for many scenarios. Below we exploit this representation
for the derivation of frequency estimates. We consider a
discrete version of eqn. | oblained by using a sampling
step T, = TYN where N is the number of samples observed.
Then the signal model (eqn. 1) can be arranged in matrix
form as

z =Wwle +n Wiwg) = A(we) @
where x and » are N x | column vectors with elements
x(iT,) and n(iT,), respectively, i =0, ., N -1, a=[u, ..,
ay]Tis an M x 1 column vector, ® and H{ay) are N x M
matrices with elements [®},, = 1;0,,,, and [Won)),,, =

%i,iﬂjwﬂiv (pm'j = (pm(_iTs'): iy = E’_}O T.s'! [] denotes trdnsposmon
and A = diag{l, e, ..., gN-DY

3 ML frequency estimator

To obtain the ML estimator we must maximise the proba-
bility density function of the observed data

plzla,w) =

1 H
AN g2N XP _0_2(“" - Wiw)a)(z - W(w)a)

where ()7 denotes complex transposition, or, equivalently,
minimise the function Ja; w) = (x — W(wa)(x — Wwa)
over all possible @ and w. The matrix W{w} depends on w
and is independent of a. Then we can write aJ/(a, w)/de =
— W) x - Wwa)] [8] Setting aJ(a, w)/da equal to zero
we find the vector ¢ minimising J(#; @) for a fixed fre-
quency ¢, this vector is

aw) = (W(HW (W)™ Ww)He

Substituting d(w) back into J(a; w) we obtain

min J{a;w) = J(&;w)

=azfz — HW(w) (W) W(w)) - W(w)Ha
To minimise J(d w) over w we need to maximise the func-
tion

Iw(w) = 2" W (W) (W) W) WwH
(5)

which is a generalised periodogram. Note that I' =

WnHW(w) = @® is the correlation matrix of the basis
functions {g,,;} |, its elements
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N—-1 :
j : *

Feoun — P i¥Pn,e
=0

are independent of the frequency w. Note also, that £, (w)
= [W(w)x],, is the output of a matched filter that corre-
lates the received signal x; = x(i7,) with a frequency shifted
complex conjugate basis function g,,;

mna=1,..M (6

772 ..U) Z lrom 1T € It (7)
=0
If @,.; = s(iT, — 7)) then L,{w) is the output of a matched
filter that correlates the received signal with a delayed and
frequency shifted complex conjugate version of the known
signal s(7)
N—1
Lp(w) = Z §(1Ts — Tm)Ti0™ ™"
=0
The ML estimator of the frequency ay and amplitudes
{a,,t M| has the structure

(:)0 = arg m‘ﬁlx{]wr (w)} (8)

M
m =Y T malnl@e) m=1,.,M (9)
n=1 -
where by using eqn. 7 the generalised periodogram
{eqn. 5) can be represented as
M M
3 S @) Ealw)  (10)
m=1n=1
If the correlation matrix I is diagonal, ie. the basis func-
tions {@,,;} X, are orthogonal and y,,, = 0 only if m = n,
eqgn. 10 1s reduced to

IVV (w)

M
1

Iw(w) =Y ——|Ly(w)? (11)

m=1 fmm

and the amplitude estimate (eqn. 9) transforms to 4, =
L, {00 Thus, the orthogonal basis functions atlow sim-
plification of the frequency estimation because in egn. 11
we need to perform only M additions for every frequency
@, while eqn. 10 requires M? additions. For M = | the cal-
culation of I {w) is further simplified

Iw(w) = %m(wn?

For a one-path channel with unknown delay we can con-
sider the following modification of the frequency estimation
algorithm:

Wo = arg =~ max {IL w)|*} (12)
The frequency estimate, eqn. 12, is defined by the position
of the maximum of the path periodograms |L, (@) for all
possible frequencies and delays. Further, if s(/) is a constant
we oblain the classical periodogram whose maximiser is the
ML estimate of a single tone frequency in white noise [3]

2
= |3 e

i=0

When implementing an approximation of the ML algo-
rithm the matrix I'! can be precomputed. Then for M <<
N the complexity of the estimator is mainly due to calcula-
tion of L, (w). This calculation can be performed by using a
DFT or FFT. The computational load increases with K =

Iw{w) =
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Q/Aw, where Q is the frequency acquisition range (the max-
imum range is € = 27) and Aw is a frequency step used for
calculation of L (wy), w, = kAw, k =0, ., K- 1. To
improve the frequency resolution, we need to decrease the
frequency step Ao, 1.e. to increase K. As a result, frequency
estimators approximating eqn. 8 are considercd to be too
complicated for implementation even using an FFT for cal-
culation (eqn. 7) and even for A = 1 [9]. For real-time
implementation a simpler algorithm can be proposed.

4  Description of the proposed algorithm

We use an approach allowing us to reduce the number of
frequencies for which the functions L, () are calculated.
This approach is based on coarse and fine search of the
periodogram peak [3]. The main purpose of the coarse
search is to select a frequency interval where the maximised
periodogram is a unimodal function. To this end, an FFT
of a length P that is greater than N is usually used [10]. If
an outlier occurs, the outcome of the coarse search will be
any frequency in the frequency acquisition range €; this
leads to a threshold effect at low SNRs, when the variance
of the frequency error approaches Q%12 [3]. At SNRs
higher than the SNR threshold the probability of an outlier
is very small and the periodogram is usually a unimodal
function over the selected frequency interval. Then, many
optimisation techniques providing convergence when
applied to unimodal functions can be exploited for the fine
search, for example, Newton's method for finding the root
of an equation [11] and different versions of three- and five-
point interpolation [12-14]. However, the known fine
search algonthms require nonlinear operations, which are
difficult to implement. For the fing search we use an itera-
tive DFT-based dichotomous procedure approaching the
periodogram peak; this procedure was effectively applied to
estimation of a frequency of a complex exponential signal
in the AWGN channel [15]. The dichotomous algorithm
does not require nonlinear operations and therefore is
easier to implement. The frequency estimation algorithm
can be described as follows.

For the coarse search, the data vector x of length N 1s
extended to P samples by appending (P — N} zeros. Then
the periodogram samples are calculated using an FFT of
length P over a grid of frequencies with a relatively large
frequency step Aw = 257/P, and the frequency e, that max-
imises the periodogram over this frequency set is identified

Wi = argmax{fw(wk)}, wE =kAw, k=0,..,P-1
wy-

Simulations have shown that frequency errors of the ML
and proposed estimators practically coincide when P = 4N.
The value @y = w,, is a frequency estimate after the coarse
search. The fine search locates a local maximum closest to
w,,. To this end, the peak sample in the periodogram and
its two neighbours are selected: f, = Iyiw,, ;). I = Iy{w,,),
I; = I{twy,y1). Then the algorithm performs the dichoto-
mous search over a sct of frequencies approaching the peri-
odogram peak. This includes Q iterations consisting of

() Aw = Aw2

(ii) if ]3 > [l then [] = ]2, (bg = (2)0 + Aw, else 13 = [2, UA)O =
(IJU - Am

{iii) a new sample of the periodogram on the frequency @y
is caleulated by using a DFT: I, = Iy{ay), go to (i)

After cach iteration the frequency step Aw decreases by a
factor of 2. After all iterations, the final frequency estimate
is @, and the final frequency resolution is Aw = 2a/(P29).
The number of frequencies for which the periodogram is
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caloulated is P + Q instead of K= P2€. This allows us sub-
stantially to reduce the computational load of the algo-
rithm with respect to the direct use of the FFT of length K.
The value of Q should be sufficiently large to obtain the
final frequency resolution Am lower than the expected fre-
quency crror, for instance, lower than the CRLB.

5 Cramer-Rao lower bound
To derive the CRLB for vartance of unbiased frequency

estimates, consider the Fisher information matrix @) with
clements [8]

2 HWiw)a)?T  HW(wla)
I(©)],., — =R :
L)) 2 C{ 20, 20,

(13)
where @ = [Refa} Im{a} o]’ is a 2M + 1) x | column
vector of unknown parameters and Re{-} and Im{-}

denote the real and imaginary parts, respectively, of a com-
plex-valued number. Differentiating in eqn. 13, we obtain

5 [ Re(T) —Im(T) Re(b)"
I©)= — | Im(T') Re(l') Im(d) (14)
" Re(®™)  Im(bT) c J

where I' = ®¥® is the M x M correlation matrix with ele-
ments v, from eqn. 6, the M x 1 column vector b =
JBHK®a contains elements

i N—1
E E o
[b]nl =1 iy UPm:iSDn,i
n=1 =1
MM N_1
c=a®HK ®a =" omal, Y Aok oni
m=1n=1 =1

where K is an N x & diagenal matrix K = diag{0, ... N -
1}. The CRLB for frequency estimates f, = @27 is
defined as

o = E{fo— f0)*}

1

s I (O aar1,2m 41
where f, = ey2n To evaluate [FY(@Yyp120041 from

eqn. [4, we use the partitioned matrix formula [§] which in
this case gives

2 0CcR =

2
I—l @ . . — G—
U (O)ons+1,28041 3 — bHT-1p)

Note that the SNR is defined as 1 = («"Ta)/(Nc?). Then,
finally, we obtain
2 QHFG
7CR = 8r?Nn(c — bHT 1)
For the next analysis it is convenient to present eqn. 15 as
H
n = 871'21N77 ' ZH;Z (16)

where the matrices I' = ®d and T = BHK|I -
PPy ' PT)KD depend only on the basis functions
{matrix @) and I is the identity matrix. For A = 1 it fol-
lows from eqn. 16 that the CRLB is

o _1
CR T 8r2Npd

where d = (s7K2)i(ss) — (sPKsYi(s's)? and s = [(T)), ...,

(13)

(17)

" S(NT)". The parameter ¢ depends only on the transmitted

signal. Tt can be used as a measure of the ‘quality’ of the
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signal; the higher d the lower is the CRLB in the AWGN
channel. From eqn. 17 for s(i7;) = 4 > 0 we obtain a well
known bound for frequency estimates of a single tone in
white noise [3]
02 = 6
T AN )

if M > | the analysis of the CRLB is more complicated
because now the CRLB is a function of both the basis
functions (matrix @) and the channel (vector a). However,

for a known transmitted signal, eqn. 16 allows us to calcu-
late two bounds, & &g a0d T Fg e Such that

2 2 2
T R,min < TCR < GCR,maz

These bounds correspond to ‘best’ and ‘worst’ channels,
other channels will result in the CRLB between these
bounds. From eqn. 16 we have

1 1
87‘—2]\[77/\171(1.1: STrQNn/\m,in

where A,,;, and A, are, respectively, minimal and maximal
eigenvalues of the matrix TT-L. Fig. 1 shows the bounds
O Zpmin and 02p .. as functions of M for sequences of
maximal length (m-sequences) of lengths 15, 63 and 255. It
can be seen that the bounds are tight, especially, for small
M and long signals. Calculations of the bounds for other
binary random sequences, in particular, with poorer auto-
correlation properties, have shown similar results. As the
accuracy performance of an ML estimator at high SNRs
approaches the CRLB, results in Fig. 1 demonstrate that
at high SNRs the performance of the ML frequency esti-
mator has a weak dependence on the channel.

2 _ 2 —
OCR,min — TChomaz =

102
-0
“0-’
-
Le--®
L o
T
105%F a--e--0--9""
- -
g M
@
b
%)
=1
g -4 -
AT o S USRREESPRE M
g
B Tl Stk kel duetar anties it i e
L — 5 L N i

2 4 6 8 10 12
M
Fig.1 Mininal and maxived CRLB ws g fisction of M
——— minimal CRLB
————  manmal CRLB

—(O—  15-symbol m-sequence
—#—  63-symbol m-sequence
~—Ft—  255-symbol m-sequence

6 Simulation resuits

Fig. 2 shows the frequency error oy of the frequency esti-
mator, defined by eqns. 8 and 10, as a function of SNR,
averaged over 10000 simulation trials for N = 18, M/ = 3
and fo = w2z = 0.2. The channel model has three paths
with delays of 5y = 0, 1) = T, p = 27, and amplitudes o =
exp(—0.4m), a; = exp({0.1x) and a; = exp(f0.72). The trans-
mitted signal is a 15-symbol binary m-sequence; it has the
autocorrelation R(p) = ZE)VGT, + pTs(iT,): R(0) = 15,
R(1) = 0 and R(2) = l. The frequency cstimator is imple-
mented by using (for the coarse search) an FFT of length P
= 64 and the dichatomous fine search with 0 =3, O = 5or
Q = 7 iterations. It can be seen that the increase of Q leads

{EE Proc.-Commun., Vol 148, No. 6, December 2001

to improvement of the estimation accuracy at high SNRs;
for Q = 7 the frequency error is close to the CRLB calcu-
lated by using eqn. 16. The SNR threshold (i.e. the SNR at
which the frequency error departs from the CRLB) does
not depend on the number of iterations Q used in the fine
search; as was discussed in Section 4, the SNR threshold 1s
defined by the coarse search, We have also performed a
similar simulation for the frequency estimator defined by
eqns. 8§ and 10 and implemented by using an FFT of
length 8192 without the dichotomous fine search; results of
the simulation coincide with that presented in Fig. 2 for
= 7. This is because the dichotomous algorithm uses the
parameters P = 64 and Q = 7 providing the same fre-
quency resolution as the direct FFT implementation of the
ML estimator. It means that the proposed approximate
ML estimator based on the dichotomous fine search allows
significant simplification of implementation without losing
the estimation accuracy.

107!

1072

frequency error

103

1] 5 10 15 20 25 30

SNR, dB

Fig.2  Dependence of the frequency error on SNR for the ML estintor with
the dichotomous fine search with different menbers of iterations Q

i p=3
—# D=5
-0 0=7

Fig. 3 compares the accuracy performance for two trans-
mitted signals. Signal 1 is a 15-symbol m-sequence with
autocorrelations R(0) = 15, R(1) = 0 and R(2) = 1, while
signal 2 has autocorrelation with a higher level of sidelobes,
R(0) = 15, R(1) = 6 and R(2) = 7. It can be seen that at
high SNRs the performance of the estimator based on
eqns. 8 and 10 for both signals is close to the CRLB, while
at low SNRs we obtain an SNR threshold for signal 2
which is higher by about 1dB. For the transmitted signal
with small sidclobe autocorrelations the frequency estima-
tor based on eqns. § and 11 (not taking into account non-
diagonal elements of the correlation matrix) gives a fre-
quency error close to that of the estimator based on
egns. 8 and 10; a difference in the accuracy performance is
seen only at high SNRs. However, for signal 2 which has
relatively large autocorrelations, the accuracy performance
15 poor. The estimator based on eqn. 12, ie. not taking
into account multipath propagation, has an accuracy per-
formance significantly poorer than that of the estimator
based on eqns. 8 and 10.

Fig. 4 shows the frequency error as a function of the fre-
quency fy being estimated for signal 1 and an SNR of
20dB. We see that the estimate is stable throughout the fre-
quency acquisition range for all three estimators. Addi-
tional simulations for the scenarios considered have shown
that the dircct FFT-implementation and the dichotomous
approximate implementation of the ML frequency estima-
tors give close frequency errors.

403

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on January 29, 2010 at 10:53 from IEEE Xplore. Restrictions apply.



107

102

frequency error

103}

10!

102

frequency error

103

0 5 10 18 20 25 30
SNR, dB
b
Fig.3  Dependence of the frequency error on SNR for three estimutors with
the dicho{%}:{(fﬁ fine searedt

—0O—  frequency cstimator based on eqns, § and 10
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Fig.4 Dcpendence of the frequency error on the estimated frequency for
three estimators with the dichotomous fine search

SNR = 20dB

--—— CRLB

—O—  frequency estimator based on egns. 8 and 10
—+—  frequency estimator based on eqns. 8 and 11
—%—  frequency estimator based on eqn. 12
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7 Conclusions

We have derived the ML algorithm for estimation of the
frequency offset of a known signal received in a multipath
channel together with the CRLB for this problem. We have
shown that at high SNRs the performance of the ML fre-
quency estimator has a weak dependence on the channel.
We have proposed a computationally efficient frequency
estimation algorithm based on the dichotomous fine search
of the periodogram peak, whose accuracy practically coin-
cides with that of the ML estimator over a wide range of
SNR and frequencies.
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