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Abstract—We report some properties of the Finite Integration
Technique (FIT), which are related to the definition of a discrete energy
quantity. Starting with the well-known identities for the operator
matrices of the FIT, not only the conservation of discrete energy
in time and frequency domain simulations is derived, but also some
important orthogonality properties for eigenmodes in cavities and
waveguides. Algebraic proofs are presented, which follow the vector-
analytical proofs of the related theorems of the classical (continuous)
theory. Thus, the discretization approach of the FIT can be considered
as the framework for a consistent discrete electromagnetic field theory.
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1. INTRODUCTION

One of the key points of the Finite Integration Technique [1, 2] is
the use of a system of two computational grids, the primary grid G

and the dual grid G̃. In the simplest case these are Cartesian-type
coordinate grids (sometimes referred to as Yee-type grids [3]), but a
large variety of more general grids are allowed, such as cylindrical or
spherical coordinate grids, triangular [4] or non-orthogonal grids [5].
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As state variables of the FIT we introduce electric and magnetic
grid voltages and fluxes, which are defined as the integrals of the
electric and magnetic field vectors over elementary objects of the
computational grid: Grid voltages

�
e i =

∫
Li

�E(�r, t) · d�s,
�

Hj =
∫
L̃j

�H(�r, t) · d�s, (1)

and grid fluxes

��
di =

∫
Ãi

�D(�r, t) · d �A,
��
b j =

∫
Aj

�B(�r, t) · d �A,
��
j i =

∫
Ãi

�J(�r, t) · d �A,

(2)

where Li, Aj are the edges and facets of the primary grid G, and L̃j , Ãi

denote the edges and facets of the dual grid G̃. The indices are chosen
such, that the primary facet Aj has the same index as the intersecting
edge L̃j of the dual grid (same to Ãi and Li).

Using these definitions, Maxwell’s equations can be transformed
into a set of matrix-vector-equations for the algebraic vectors �e ,

��
d,

�

h,
��
b, and

��
j

C�e = − d

dt

��
b, C̃

�

h =
d

dt

��
d +

��
j , (3)

S
��
b = 0, S̃

��
d = q, (4)

which are referred to as Maxwell’s Grid Equations.
The matrix C is the discrete curl-operator of the grid G: Its entries

Cji are ±1, only if edge Li is contained in the boundary of facet Aj ,
and zero otherwise (incidence relation). Analogously, the matrix S is
the discrete div-operator1 of the primary grid: Its entries Skj are ±1,
only if facet Aj is contained in the boundary of cell k. The same applies
to the matrices S̃ and C̃ and the dual grid G̃.

From grid topology we find the relations

SC = 0 and S̃C̃ = 0, (5)

which in the light of the FIT have some important consequences: As
direct analogs to the vector-analytical identity ‘div rot=0’ they ensure,
1 For historical reasons the div-operators are denoted with S and S̃ (’source’), and symbols
beginning with D are used for diagonal matrices.
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that also in the discrete regime we can identify curl-free (solenoidal)
and divergence-free fields, and a curl-field is always free of sources. This
property holds exactly (up to numerical round-off) for all discrete field
vectors of the FI-approach (and not only for vanishing grid step sizes
∆→ 0).

Another topological result is the duality of the curl-operators

C̃ = CT , (6)

which plays an important role in the following analysis of the discrete
eigenvalue problem of the FIT. Furthermore, the transposed matrix of
the div-operator ST can be identified to be the negative dual gradient:

G̃ = −ST and G = −S̃T . (7)

In the case of a Cartesian grid system with NP primary nodes
we can choose the indexing of the edges and facets such, that in the
discrete vectors the x−, y− and z−components are separated,

�e =

 �ex
�ey
�ez

 ,
�

h =

 �

hx�
hy�
hz

 . (8)

As a consequence, we obtain NP × NP -blocks Px, Py and Pz in the
operator matrices

C =

( 0 −Pz Py

Pz 0 −Px

−Py Px 0

)
, C̃ =

 0 PT
z −PT

y

−PT
z 0 PT

x

PT
y −PT

x 0

 ,

(9)

and

S = ( Px Py Pz ) , S̃ =
(
−PT

x −PT
y −PT

z

)
, (10)

which can be identified as discrete partial differentiation operators
[1, 2].

To complete the discretization approach we introduce so-called
material matrices as an analog of the constitutive relations of
continuous fields (without polarization vectors):

��
d = Mε

�e
��
j = Mκ

�e
�

h = Mµ−1

��
b (11)

If we assume a dual-orthogonal grid system, where primary edges and
dual facets (or dual edges and primary facets) intersect with an angle
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of 90 degrees, the material matrices (11) can be defined as diagonal
matrices with the entries

Mε,ii =
εÃi

Li
, Mκ,ii =

κÃi

Li
, Mµ−1,jj =

L̃j
µAj

, (12)

where ε, κ and µ are properly averaged material coefficients. The
consistency of these expressions with the continuous relations can be
proven by simple Taylor expansions [2, 6].

Obviously, for positive permittivities and permeabilities the
matrices Mε and Mµ−1 are symmetric positive definite. This property
together with the duality (6) of the curl-operators can be exploited to
derive a number of important theorems for the discretization approach
of the FIT. This includes the conservation of energy in simulations
with time-varying fields, and various orthogonality relations for the
eigensolutions of the method. In the following chapters we first
introduce the underlying concept of electric and magnetic energy in
the discrete system, and then present some important consequences of
this definitions and their algebraic proofs.

2. ORTHOGONALITY PROPERTIES AND DISCRETE
ENERGY

For the rest of this paper we restrict our analysis to Cartesian
grids, as they allow a simple but important definition of a discrete
energy quantity. To motivate the following derivation, we regard
the eigenvalue equation for the electric field in a lossless system (no
currents)

ε−1curl µ−1curl �E = ω2 �E (continuous), (13)

M−1
ε CTMµ−1C �e = ω2 �e (discrete), (14)

where the dual curl operator in the discrete formulation was replaced
by C̃ = CT according to (6). As the material matrices are diagonal
and positive definite, we can define their real-valued ’roots’

Mε = M1/2
ε M1/2

ε Mµ−1 = M1/2
µ−1 M1/2

µ−1 (15)

by taking the square root of each entry. The system matrix A =
M−1

ε CTMµ−1C of the algebraic eigenvalue problem can then be
symmetrized by the transformation

�e ′ = M1/2
ε

�e , (16)
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leading to

M−1/2
ε CTMµ−1CM−1/2

ε
�e ′ = ω2 �e ′, (17)

with the symmetric positive semidefinite system matrix

A′ = M−1/2
ε CTMµ−1CM−1/2

ε = (M1/2
µ−1CM−1/2

ε )T (M1/2
µ−1CM−1/2

ε ).
(18)

Thus all eigenvalues λ = ω2 of equations (14) and (17) are real-
valued and non-negative numbers, and all eigensolutions represent
either static solutions (with ω = 0) or undamped oscillations with
real eigenfrequencies ω > 0. This is discussed in more detail in [2, 6].

Another important property of eigenvalue problems with a
positive definite system matrix is the orthogonality of the modes: For
each pair of eigenvectors with different eigenvalues we have

(�e ′ξ)
H �e ′η = 0 (λξ �= λη). (19)

Re-substituting the original vectors applying (16), we can
normalize the eigenmodes to get

�eHξ Mε
�eη = �eHξ

��
dη =

{
0 (ξ �= η)

1 Watt (ξ = η). (20)

From the physical dimension of the scalar product [�eHξ
��
dξ] = 1 Watt

it can be identified as an energy-related form, and this motivates the
definitions of the (time-averaged) total stored electric and magnetic
discrete energy:

W e =
1
4
�eH

��
d, Wm =

1
4
�

hH
��
b. (21)

For an interpretation of these formulas we consider two (real-
valued) components �

e i and
��
Di, which refer to a primary grid edge Li

in x-direction, and to the corresponding dual facet Ãi. According to
Fig. 1 this facet consists of four parts ∆Ãk (k = 1 . . . 4) with eventually
different permittivities εk.

Based on the (continuous) Ex-component of the electric field at
the intersection point, the first order approximations

�
e i ≈ Ex · Li,

��
di ≈ Ex ·

4∑
k=1

εk ∆Ãk, (22)



306 Schuhmann and Weiland

Li

Ai
~

Ai
~

Ex
Ex

x

y

yx

zz

dual grid G
~� 2

� 3 � 4

� 1

primary grid G

� A1
~� A2

~

� A3
~ � A4

~

Vx,i
*

Figure 1. Calculation of the discrete electric energy referring to one
pair of components �

e i and
��
Di. The integration volume V ∗x,i consists

of one half of two neighboring dual cells and may contain up to four
different materials.

(which are also the basis of the discrete material relations) yield

1
4
�
e i ·

��
di ≈

1
4

4∑
k=1

εkE
2
x · Li ∆Ãk

≈ 1
4

∫
V ∗x,i

εE2
x dV = W

∗
x,i. (23)

This expression can be considered as an approximation of the stored
energy of the x-component of the discrete electric field in the ’mixed’
cell

V ∗x,i = Li Ãi, (24)

which is a combination of two half dual cells (cf. Fig. 1). The
consistency of this discrete energy quantity can be easily proven by
a Taylor expansion of Ex(x, y, z) — the same argumentation as for the
consistency of the material relations.

For all x-components in �e and
��
d we have⋃

i

V ∗x,i = Ω (problem domain), (25)

and obviously this is also true for the y- and z-components (yielding
three different segmentations of Ω). Thus, the scalar product in (21)
as the summation of all cell energies

1
4
�eH

��
d =

∑
i

W
∗
x,i +

∑
i

W
∗
y,i +

∑
i

W
∗
z,i (26)
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is the total stored discrete electric energy in the grid. The derivation
of the magnetic energy is completely analogous.

For static or transient fields, where no time-averaging has to be
performed, the corresponding definitions are

We =
1
2
�eT

��
d, Wm =

1
2
�

hT
��
b. (27)

3. ENERGY CONSERVATION IN THE DISCRETE
SYSTEM

Based on this definition of the discrete energy we will now consider its
transient characteristics for time-varying fields [2, 7].

In a first step the time derivatives in (3) are left untouched,
and thus the conservation of discrete energy is only analyzed for the
spatial discretization scheme itself. This is sufficient, for example, for
time-harmonic fields, if the time-dependence is implicitly (and without
approximations) introduced by a complex exponential expression. For
the general case of transient fields, however, the time axis has to be
discretized too, and thus also the time integration scheme applied to
Maxwell’s Grid Equations has to be taken into account.

Discrete space – continuous time

The total discrete energy in the computational grid according to (27)
is given by

W (t) = We(t) + Wm(t) =
1
2
(�eT (t)

��
d(t) +

�

hT (t)
��
b(t)). (28)

Exploiting the symmetry of the material matrices, we obtain for the
time derivative of this equation:

d

dt
W (t) =

1
2

(
d

dt
�eT

��
d + �eT

d

dt

��
d +

d

dt

�

hT
��
b +

�

hT
d

dt

��
b

)
=

1
2

(
(Mε

�e)T
d

dt
�e + �eT

d

dt

��
d + (Mµ

�

h)T
d

dt

�

h +
�

hT
d

dt

��
b

)
= �eT

d

dt

��
d +

�

hT
d

dt

��
b. (29)

Putting in Maxwell’s Grid Equations (3) and the duality relation (6),
a discrete form of Poynting’s law for the total energy in the grid can
be derived:

d

dt
W = �eT (C̃

�

h −
��
j )−

�

hTC�e = −�eT
��
j . (30)
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As the basic formulation in (3) implies closed boundary conditions,
there is no radiation term in this formula. If only the energy in a sub-
domain of the grid is to be considered, such a radiation term can be
formulated by a proper definition of a discrete energy flow vector [8],
where components of the discrete electric and magnetic voltages have
to be locally interpolated.

For time harmonic processes an additional result concerning the
discrete energy conservation can be found. Assuming a time harmonic
problem with no external current excitation or losses, all eigenmodes
�e and the related fluxes

��
d can be chosen to be real-valued, yielding

purely imaginary magnetic vectors
�

h and
��
b. Using the time-harmonic

form of (3),

C�e = −iω ��
b, C̃

�

h = iω
��
d, (31)

we obtain the relation
1
4
�eH

��
d =

1
4

1
iω

�eHC̃
�

h =
1
4

1
iω

(C�e)H
�

h

= −1
4

1
iω

(iω
��
b)H

�

h =
1
4

��
b
H �

h =
1
4

�

hH
��
b. (32)

Thus for the time-averaged magnetic and electric energy the time
harmonic equilibrium relation

Wm = We (33)

holds also in the discrete sense within the FI-theory.

Discrete space – discrete time

The most common time integration algorithm in connection with the
FIT is the leapfrog-scheme [2, 3], which follows from (3), if the time
derivatives are substituted by central differences. Having in mind the
energy definitions above, we introduce the scaled composed vector

y(t) =

(
M1/2

µ

�

h(t)
M1/2

ε
�e(t)

)
with∥∥y(t)

∥∥2

2
=

�

hTMµ

�

h + �eTMε
�e = 2 ·Wtot(t). (34)

Maxwell’s Grid Equations (without currents) then can be written as
one system of ordinary differential equations

d

dt
y = At y, (35)
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with

At =

(
0 −M−1/2

µ CM−1/2
ε

M−1/2
ε CTM−1/2

µ 0

)
=

(
0 A1

−AT
1 0

)
.

(36)

The system matrix At of this time domain formulation is skew-
symmetric and thus has only purely imaginary eigenvalues λt,i = iωi.
The corresponding eigenvectors

yt =
( �

h′i
�e ′i

)
=

(
M1/2

µ

�

hi
M1/2

ε
�e i

)
(37)

fulfill the relations

A1
�e ′i = λt,i

�

h′i and −A1

�

h′i = λt,i
�e ′i. (38)

Using this notation, the update-equations of the leapfrog-
algorithm for full and half time steps tm = t0 + m ·∆t appear as

y(m+1) = B y(m) (39)

with

y(m) =

(
M1/2

µ

�

h(m)

M1/2
ε

�e (m+1/2)

)
and

B =
(

I ∆tA1

−∆tAT
1 I + ∆t2 AT

1 A1

)
. (40)

Note, that despite of the staggered allocation of the electric and
magnetic field vectors on the time axis, the squared Euclidean norm of
y(m) can still be considered as a discrete energy definition — not only
in an algebraic sense, but also physically due to the convergence to the
time-continuous formulation for ∆t→ 0.

To analyze the time dependence of the discrete energy we compute
the eigenvalues and eigenvectors of the iteration matrix B using the
approach

yB,i =
( �

h′i
α
�e ′i

)
with α ∈ C

⇒ ByB,i =
( �

h′i (1 + α∆tλt,i)
α
�e ′i (1 + 1

α∆tλt,i + ∆t2λ2
t,i)

)
, (41)



310 Schuhmann and Weiland

where the relations (38) have been applied several times. Obviously,
yB,i is an eigenvector of B with the corresponding eigenvalue

λB,i = 1 + α∆tλt,i, (42)

if α fulfills the equation

1 + α∆tλt,i = 1 +
1
α

∆tλt,i + ∆t2λ2
t,i. (43)

From (42) and (43) we obtain the following relation between the
eigenvalues λA,i = iωi of the system matrix At and λB,i of the iteration
matrix B:

λB,i =
2− (∆tωi)2

2
±

√(
2− (∆tωi)2

2

)2

− 1 . (44)

Under the Courant-condition

|∆t ωi| ≤ 2 (45)

the expression under the root is always negative, leading to complex
eigenvalues λB,i with

|λB,i| = 1. (46)

Thus the norm (the energy) of all eigenvectors of B remains unchanged
in each iteration step. As these eigenvectors build an orthogonal basis,
this is also true for an arbitrary vector y,∥∥y(m+1)

∥∥
2

=
∥∥By(m)

∥∥
2

=
∥∥y(m)

∥∥
2
, (47)

which is the desired proof for the energy conservation of the FIT
combined with the leapfrog scheme.

4. ORTHOGONALITY OF DISCRETE WAVEGUIDE
MODES

In the previous chapters the orthogonality properties of the three-
dimensional2 eigenmodes of the FIT-discretization based on a energy-
related inner product has been proven.

A similar theorem can also be formulated for the two-dimensional
modes in waveguides, or — to be more general — in two-dimensional
2 The dimension here refers to the number of spatial directions, not to the number of
degrees of freedom.
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cross-sections of a Cartesian grid. To this end we first derive the
discrete eigenvalue equation for such modes [9].

For the simulation of waveguide modes propagating in a
coordinate-direction (here: z) of the grid,

�E, �H ∼ e−i kzz, (48)

(with the propagation constant kz), this spatial direction can be treated
by continuous rather than discrete analysis. From

Pz f = f
∣∣
z0+∆z

− f
∣∣
z0

= f
∣∣
z0

(e−i kz∆z − 1)

≈ f
∣∣
z0

(−i kz∆z). (49)

we can substitute the differentiation operator Pz in the block-wise
notation (9) and (10) of the operator matrices by7

Pz = −i kz∆z I. (50)

(Here for sake of a simplified notation the indexing system of the
components has to be further specified: Pairs of transverse components
(�e x,i,

�

Hy,j) or (�e y,i,
�

Hx,j) referring to intersecting primary and dual
edges in the 2D-projection of the grid, are assumed to have the same
index i = j; cf. Fig. 2, right.)
Note, that applying (50) to (9) and (10) results in complex-valued
matrices, which are only valid for one distinct kz. Besides, the
transposed sub-matrices in C̃ and S̃ have to be replaced by the
Hermitian expression PH

z = +i kz∆z I.
In the next step, we use the divergence-free condition for the

electric flux to eliminate the longitudinal components from the
eigenvalue equation. As the expression (50) can be easily inverted,
we get

S̃
��
d = 0 ⇒ ��

dz =
1

i kz∆z
(−PT

x

��
dx −PT

y

��
dy). (51)

Finally a 2NP × 2NP -eigenvalue problem can be derived from (14) for
the transverse components of the waveguide modes [9]:

(A2D − ω2 I− k2
z B2D) �e t = 0. (52)

In this paper we are mainly interested in the orthogonality
properties of the solutions of this eigenvalue problem. Similar to the
7 This corresponds to a first order approximation for small longitudinal grid step sizes
∆z. It can be shown, however, that ∆z can be shortened from all formulas based on
this approximation, and thus (49) can be considered as an exact representation of the
longitudinal differentiation operator in waveguides.



312 Schuhmann and Weiland

3D-case, from the algebraic properties of the 2D-system matrix we get
the relation for the 2D-modes (index ’t’ for only transverse x- and
y-components):

�eTt,ξ
��
dt,η =

(
�eTx,ξ

�eTy,ξ
) ( ��

dx,η
��
dy,η

)
= 0 (kξ �= kη). (53)

If we assume a homogeneous material distribution (e.g. vacuum), a
single component of this sum can be written as

�
e x,i

��
dx,i ≈ (Ex ∆xi) · (ε0Ex ∆ỹi∆z̃) = ε0∆z̃ (E2

xA
∗
x,i) (54)

with the lengths and area as in Fig. 2 (left). Thus, for all components
the discrete orthogonality relation corresponds to the dot-product
based orthogonality of continuous modes in hollow waveguides [10]∫

A

�Eξ · �Eη dA = 0 (kξ �= kη). (55)

Ex

Ax,i
*

x

y

G
~

G
~

G
� z~

Ex
Hy

Hx
Ey

G

� y~i

� xi

Axy,i
*

Ayx,j
*

Figure 2. Orthogonality of discrete waveguide modes. Left: Energy-
related orthogonality �eTt,ξ

��
dt,η = 0 corresponding to the dot-product

�Eξ · �Eη for the continuous fields in hollow guides. Right: Energy-
flow related orthogonality relation �eTt,ξ K

�

ht,η = 0 corresponding to
the vector product �Eξ × �Hη (with a topological matrix operator K
according to (67)). The integration areas are implicitly defined by the
integral-based state variables of the FIT.

An alternative formulation for the orthogonality of waveguide
modes is based on the vector product of the electric and magnetic
fields (similar to the definition of Poynting’s vector):∫

A

( �Eξ × �Hη) · d �A = 0 (|kξ| �= |kη|). (56)
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A corresponding theorem can be found for the discrete fields, too, and
we again only use Maxwell’s Grid Equations, the duality property (6),
and the symmetry of the material matrices for its derivation. It is
remarkable, that the algebraic proof is in close analogy to the classical
proof for continuous fields (cf. [10]).

We start with the discrete curl-equations in (3), applied to two
waveguide modes with kξ �= ±kη. According to (50) two different
C-matrices (denoted Cξ and Cη) have to be used:

Cξ
�eξ = −iω��

bξ, Cη
�eη = −iω��

bη. (57)

Left-multiplying by
�

hTη or
�

hTξ yields
�

hTηCξ
�eξ = −iω

�

hTη
��
bξ,

�

hTξ Cη
�eη = −iω

�

hTξ
��
bη, (58)

leading to (exploiting the symmetry of the magnetic material matrix)
�

hTηCξ
�eξ −

�

hTξ Cη
�eη = −iω

(
(Mµ−1

��
bη)T

��
bξ − (Mµ−1

��
bξ)T

��
bη

)
= −iω

(
��
bTηM

T
µ−1

��
bξ −

��
bTξ M

T
µ−1

��
bη

)
= 0. (59)

Analogously we obtain from the second curl-equation:

C̃ξ

�

hξ = iω
��
dξ, C̃η

�

hη = iω
��
dη, (60)

�eTη C̃ξ

�

hξ = iω
�eTη

��
dξ,

�eTξ C̃η

�

hη = iω
�eTξ

��
dη, (61)

�eTη C̃ξ

�

hξ − �eTξ C̃η

�

hη = iω
(
(M−1

ε

��
dη)T

��
dξ − (M−1

ε

��
dξ)T

��
dη

)
= iω

(��
dTη (M−1

ε )T
��
dξ −

��
dTξ (M−1

ε )T
��
dη

)
= 0.

(62)

Adding up (59) and (62) yields:
�

hTηCξ
�eξ − �eTξ C̃η

�

hη −
�

hTξ Cη
�eη + �eTη C̃ξ

�

hξ = 0

⇒ �eTξ (CT
ξ − C̃η)

�

hη − �eTη (CT
η − C̃ξ)

�

hξ = 0. (63)

If we introduce now the block-wise notation of C and C̃ according
to (9) and (50), we get

CT
ξ − C̃η =

 0 −ikξI −PT
v

ikξI 0 PT
x

PT
v −PT

x 0

−
 0 ikηI −PT

v

−ikηI 0 PT
x

PT
v −PT

x 0


= −i(kξ + kη)

( 0 I 0
−I 0 0
0 0 0

)
. (64)
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Thus, the transverse fields

�e t,ξ =
(

�ex,ξ
�ey,ξ

)
�

ht,ξ =
(�

hx,ξ�

hy,ξ

)
(65)

fulfill the relation

(kξ + kη)
(
�eTt,ξ K

�

ht,η − �eTt,η K
�

ht,ξ
)

= 0, (66)

with the matrix operator

K =
(

0 I
−I 0

)
. (67)

For kξ �= −kη as assumed above we finally get
�eTt,ξ K

�

ht,η − �eTt,η K
�

ht,ξ = 0. (68)

If we change the sign of one of the propagation constants in this
derivation (for a wave propagation in the opposite direction),

k′ξ = −kξ, �e ′t,ξ = �e t,ξ,
�

h′t,ξ = −
�

ht,ξ. (69)

we get the relation

(−kξ + kη)
(
�eTt,ξ K

�

ht,η + �eTt,η K
�

ht,ξ
)

= 0, (70)

instead of (66), leading to (for kξ �= kη):
�eTt,ξ K

�

ht,η + �eTt,η K
�

ht,ξ = 0. (71)

Adding up (68) and (71) finally yields the desired orthogonality
relation for the discrete eigenmodes in waveguides:

�eTt,ξ K
�

ht,η = 0 (kξ �= ±kη). (72)

For each set of degenerated modes with kξ = ±kη a linear combination
can be found such, that (72) is fulfilled, too.

The geometrical interpretation of this orthogonality relation is
shown in Fig. 2 (right). By the entries ±1 in the topological operator
K, pairs of components �

e x,i,
�

hy,i and �
e y,j ,

�

hx,j are coupled to each
other, which are related to perpendicular edges; and each product of
the corresponding field strengths can be considered as a part of the
desired expression �E× �H. The grid sizes implied in the discrete voltage
quantities define again integration areas A∗xy,i and A∗yx,j , which cover
the cross section of the waveguide. Thus, (72) can be identified as a
discrete analog of the integral over the vector product of �Eξ and �Hη in
(56).
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5. CONCLUSION

In this paper we presented the concept of discrete energy quantities
for the electric and magnetic grid voltages — the state variables of the
Finite Integration Technique — in a Cartesian grid system.

A central point of the derivation is the first-order interpretation of
the discrete voltages as products of a continuous field quantity and the
metric of the corresponding edges and facets of the grid. This leads to
the geometrical interpretation of the energy quantities as sum over all
cell-energies, using different segmentations of the computation domain.

Several algebraic proofs for important properties of the FIT have
been presented, including the energy conservation of the FIT both
in frequency and time domain, the energy-based orthogonality of the
three-dimensional eigenmodes, and two different formulations for the
orthogonality of two-dimensional modes in longitudinally homogeneous
waveguides.

All these proofs are based on only a few algebraic properties of
the discretization scheme — namely the duality of the discrete curl-
operators and the definition of symmetric and positive definite material
matrices. These properties thus can be considered to be key points of
the formulation, and have to be preserved for any extensions of the
method (like e.g. sub-gridding techniques, non-orthogonal grids, or
higher-order schemes).

Not only the presented theorems themselves but also their
derivations and proofs within the discrete algebraic system are in close
analogy to the vector-analytical analysis of continuous fields. The
Finite Integration Technique therefore can be considered as a unique
and consistent discrete electromagnetic field theory.
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