Taking the Mystery Out of High Speed Modeling

- 2D vs. 3D Metal
 - 3D metal properties are defined in the material setup
 - 2D metal properties are defined in the boundary setup
 - 2D metal definition is recommended if skin depth and edge coupling are not major concerns
- Perfect E vs. Finite Conductivity Boundary Definitions
 - HFSS uses less RAM and time to solve problems with perfect E metal definitions
 - Perfect E boundary consists of real matrices instead of complex ones
 - Add metal losses at the end of simulation for accurate loss calculation

Boundary Setup (cont.)

- Radiation Boundary vs. PML
 - Recommended spacing for radiation boundary is lamda/4 while for PML, it is lamda/6.
 - In general, PML boundaries can be placed closer to the structure
 - Depending on the angle of incidence, some reflections will exist for radiation boundaries
 - PML boundaries have zero reflections
 - Radiation boundaries is a boundary condition
 - Definition is the 2nd order boundary condition that approximates free-space
 - PML is part of the solution space
 - Definition is a set of "fictitious" biaxial anisotropic material

Source Setup – Wave Port

- Traditional ports must be planar
- Traditional ports must have material properties of metal on one side of its surface
- Port size must be made large enough to include fringing fields
 - For microstrip lines with trace width w and dielectric height h
 - Recommended port height: between 6h to 10h
 - Recommended port width: for w >= h, 10w and for w<h, 5w
 - For stripline with trace width w and dielectric height h
 - Recommended port height: between top and bottom ground planes
 - Recommended port width: for w >= h, 8w and for w<h, 5w
- For use in time domain simulations, a terminal-based description in terms of voltages and currents is more useful than the traditional modal S-matrix

Source Setup – Wave Port (cont.)

- Terminal lines must be created to define port voltages
- The number of terminals on each port must equal the number of modes for the port
- For multi-conductor transmission line ports, define one mode per conductor
- The maximum number of modes per port is 25
- The maximum number of ports allowed is 100

Source Setup – Lumped Gap Port

- Lumped gap ports must be planar
- Unlike traditional wave ports, gap ports can be defined internal to a structure and do require a metal surface as boundary
- Lumped gap ports need not be as big as the traditional wave ports
- A calibration and impedance line must be defined for a gap port
- The complex impedance must be nonzero and the resistance must be nonnegative
 - The user defined complex impedance is used as reference impedance for the S matrix
- Only one terminal should be assigned to each gap port since only one port mode is allowed for each lumped gap port

Solution Setup

- Set the adaptive frequency to .5 (1/t_{rise}) and set your S matrix convergence to the desired level. (Do not run a frequency sweep just yet)
- When a convergence to the criteria in the step above is done, set the adaptive frequency to (1/t_{rise}) and set the number of passes to 3 and run the solver again
- Now you can run a frequency sweep
 - For full wave spice results, make sure you select an "interpolative" sweep
 - Use the calculator available to find the required frequency setting for your sweep
 - The frequency settings will depend on the signature of the time domain signals for your application
- Make sure you select the "Current" Mesh as your starting Mesh

Difference between Sweep Options

🔽 Sweep		C Fast	C Discrete	Interpolating	
Start Frequency:	0.1 GH:	z		Error Tolerance:	0.5 %
Stop Frequency:	5 GH:	z		Maximum Solutions:	20
Number of Steps:	490				
View Frequenc:	ies	Setup for	Full Wave Spice:	Calculate	

- Fast Frequency sweep solves for all the poles and zeros of the transfer function
 - For a well behaved structure, much time and resources are wasted
 - Poor error indicator
- Discrete Frequency is based on the current mesh and resolved for each frequency in the band that the user specified, this can take a long time for a large number of frequency steps
 - If you reduce the number of steps, you lose solution information
- Interpolative Frequency is based on interpolated results matched to error tolerances
 - For well behaved structures, interpolation between frequency points results in a fast solution
 - Better suited for very wide frequency bands

Mesh Options

- For structures with metal thickness because of skin depth concerns, seeding can be used to assist the mesher
 - For 3D metals, be sure to set the "Solve Inside" button in the material setup
 - Under Define Seed Operations, select all the 3D metals and seed the object face by skin depth
 - The relative Permeability, conductivity, and frequency information is required to use the internal skin depth calculator supplied within HFSS
- For structures with strongly coupled fields between signals line, virtual objects can be created to improve the mesh
 - Seeding can also be applied to these virtual objects to arrive at a more accurate solution faster

Mesh Options (cont.)

- Further mesh refinement can be added even after the problem has been solved if the mesh between highly coupled signals is not dense enough
 - In this case, define a manual mesh for the structure by performing a mesh refinement on the desired objects
- Another thing that can be done to improve the mesh is the addition of virtual objects in the model
 - Virtual objects are smaller objects within large dielectric material objects to help improve the quality of the mesh

Differential Pair Setup

- Results based on differential excitation can be seen in HFSS before export into Spice by setting up differential pairs for a multiple transmission lines for a port
- A minimum of two transmission lines are required on a single port for differential setup
- A differential pair represents two circuits, one with positive excitation and the other with negative excitation on the port
- Differential pairs can be setup before a solve or after one by invoking "Setup Executive Parameters" in the Executive Commands
- A comparison of noise rejection to the conventional "single-ended" signal can be done by changing the terminal impedance of the differential pair to its best reference impedance

Post Processing (Modal Matrix)

- S Matrix Results with in dB at 5 GHz
 - No Terminal line, Port fields results

 Port Impedance Matrix at 5 GHz

	portl:ml	portl:m2	port2:ml	port2:m2
portl:ml	-32.985	-42.601	-0.003	-41.321
portl:m2	-42.601	-24.626	-40.787	-0.016
port2:ml	-0.003	-40.787	-33.034	-42.923
port2:m2	-41.321	-0.016	-42.923	-24.609
	Port Zpi	Port Zp	v Port	Zvi
portl:ml	2.54693e+00	01 2.73107	e+001 2.63	739e+001
portl:m2	3.12963e+00	1.98777	e+001 2.49	419e+001
port2:ml	2.49811e+00	01 2.61380	e+001 2.55	530e+001
port2:m2	8.02577e+00	1.97681	e+001 3.98	315e+001

Post Processing (Terminal Matrix)

- S Matrix Results with in dB at 5 GHz
 - With Terminal line,
 Port fields results for terminal 1

Port Impedance Matrix at 5 GHz

Post Processing (Differential Matrix)

	diffl:Diff	diffl:Commo	diff2:Diff	diff2:Co	mmo
diffl:Diff	-23.444	-52.562	-0.020	-62.87	2
diffl:Common	-52.562	-32.773	-63.908	-0.00	12
diff2:Diff	-0.020	-63.908	-23.443	-52.61	.4
diff2:Common	-62.872	-0.002	-52.614	-32.77	4
		- 17	- 7 -		
) +	$\sim 10^{-1}$. 1		
		13 File 1	1		
<u> </u>	12	17	M = 1		
			· • • • •		
	二 作 ∓	N 11			
		2			
		;			
	A: 661 - D: 66) 11661 - Comm		Dice	11 660 - 0
	aiffi:biff	diff:Comm	o diff2:	DILL	diff2:00m
diffl:Diff	8.19006e+001	4.85286e-0	01 0.0000)0e+000	0.00000e+0
diffl:Common	4.85286e-001	2.62280e+0	01 0.0000)0e+000	0.00000e+0
diff2:Diff	0.00000e+000	0.00000e+0	00 8.0838	9e+001	2.47358e-0

0.00000e+000

2.47358e-002

0.00000e+000

- S Matrix Results with in dB at 5 GHz
- Differential Excitation, Port fields results

Port Impedance Matrix at 5 GHz

2.57212e+001

	igh	performance	EDA
--	-----	-------------	-----

Setting the Correct Impedance for Renormalization for the Differential Matrix (1)

Magnitude (dB)

Setting the Correct Impedance for Renormalization for the Differential Matrix (2)

- After an interpolative sweep, use the post processed matrix data to calculate the impedance matrix
 - Make sure that all the differential pairs defined are selected and that the reference impedance for all the terminals are set to: Real: 50 ohms, Imag: 0 ohms
 - Look at the terminal Zo for the matrix you just calculated in the previous step
 - Look at the values of the matrix at a frequency in the sweep (recommendation: either the adaptive frequency or the highest frequency)
 - Use only the diagonal elements
 - Use the diff diff terminal Zo as the reference impedance for normalization for terminal 1
 - Use the common common terminal Zo as the reference impedance for normalization for terminal 2
 - Re-compute the terminal matrix for the differential pairs using the impedance found in the previous step

Setting the Correct Impedance for Renormalization for the Differential Matrix (3)

