HFSS端口应用详解——Wave Port
HFSS端口应用详解——Wave Port
概述:
Wave Port是HFSS中典型的外部端口,这里所说的外部是指只有一侧有场分布,一般都在边界和背景的交界处。外部端口需要通过传输线的方式才能将激励信号加入到结构中,而外部端口通常会定义成传输线的截面。Wave Port截面就是HFSS求解结构参数时的参考面,它对于S参数的相位计算非常重要。HFSS在端口截面处求解传输线的特性,得到端口的特性阻抗和传播常数,用于计算S参数。
1. 传输线原型:
传输线线宽W=6mil,线间距S=3W=18mil,线长2000mil,层叠结构是铜厚1.4mil,传输线距离下方的GND平面58mil,介质的介电常数是4.25,如下图:
由上图有Polar计算得到的传输线的特性阻抗是138.27ohm。
2. airbox背景作为Wave Port端口:
将Wave Port创建在Boundary face of free space上,且让Wave Port平面紧贴传输线,如下图所示:
上图可以看到,HFSS计算得到的传输线的阻抗大约是136.7138.5ohm,这个结果与原型中的Polar的特性阻抗计算值是完全吻合的。
3. 以PCB侧边YZ平面作为Wave Port端口:
将Wave Port创建在PCB的侧边YZ平面上,且让Wave Port平面紧贴free space,如下图所示:
上图可以看到,仿真出来的特性阻抗随着频率有比较大的变化,这是因为Wave Port没有考虑传输线上方空间的电磁场效应导致的,因此这个结果是错误的。
3. Wave Port端口不紧贴free space:
将Wave Port创建在PCB的侧边YZ平面上,但是让Wave Port平面不紧贴free space,如下图所示:
上图可以看到,HFSS无法继续仿真,因为不但没有考虑传输线上方空间的电磁场效应,而且在free space boundary与PCB侧边上的Wave Port之间的空间上没有电磁场的information。
4. 新增Wave Port端口平面不紧贴free space:
在PCB的侧边YZ平面上,另建一个“矩形平面”,该平面紧贴传输线但不贴free sapce boundary,在这个新的平面上设置Wave Port,如下图:
上图可以看到HFSS仿真得到的传输线的特征阻抗是223.9ohm左右,与Polar的计算结果偏差很大,这个结果时错误的。
5. 新增Wave Port端口大平面且紧贴free space:
在PCB的侧边YZ平面上,另建一个“矩形平面”,该平面紧贴传输线且紧贴free sapce boundary,平面下部超出PCB下边沿,在这个新的平面上设置Wave Port,如下图:
上图看到,HFSS计算得到的传输线的阻抗大约是136.7138.5ohm,这个结果与原型中的Polar的特性阻抗计算值是完全吻合的。
6.新增Wave Port端口小平面且紧贴free space:
在PCB的侧边YZ平面上,另建一个“矩形平面”,该平面紧贴传输线且紧贴free sapce boundary,但是这个平面的下方与PCB板下边沿平齐,在这个新的平面上设置Wave Port,如下图:
上图看到,HFSS计算得到的传输线的阻抗大约是131.8133ohm,这个结果与原型中的Polar的特性阻抗计算值基本吻合,但是偏小。
结论:
由上面的几种仿真结果对比我们可以归纳出Wave Port的两点结论:
Wave Port必须设置在外部端口上,即一定要贴着free space boundary;
Wave Port平面的大小对仿真结果精度有较大影响。
通常HFSS的Wave Port平面的规则如下:
双微带线的Wave Port平面尺寸规则
双微带线的Wave Port平面尺寸规则
双带状线的Wave Port平面尺寸规则
单带状线的Wave Port平面尺寸规则
以上是一些常用的Wave Port使用规则,其实在实际的应用中Wave Port也可以用作内部端口,但是此时需要做特殊处理,具体应用我们在下一期再介绍。
小编介绍得很详细,谢谢分享
小编是不是也会介绍在端口面背侧加PEC材质的体结构,我看的教材都是这么设置的。
小编讲解的很详细,期待你的下一次分享。
继续期待下一篇好文
有点搞不懂,如果波长是1310nm,λ/2=65.um,这样就不合用了吗?
相关文章:
- 如何计算微带天线端口的特性阻抗 (05-08)
- 关于宽缝微带天线的端口设置 (05-08)
- RF封装的端口设置 (05-08)
- 如图所示共面波导的输入端口的积分线怎么设置? (05-08)
- 如何定义接收端口? (05-08)
- 请教各位一下:CPW中心导带加信号,端口如何设置. (05-08)