官方淘宝店 易迪拓培训 旧站入口
首页 > 仿真设计 > 射频仿真设计学习 > 集成电路概念解析

集成电路概念解析

05-08
限幅电路
能按限定的范围削平信号电压波幅的电路。又称限幅器、削波器。限幅电路常用于:①整形,如削去输出波形顶部或底部的干扰。②波形变换,如将输出信号中的正脉冲削去,只留下其中的负脉冲。③过压保护,如强的输出信号或干扰有可能损坏某个部件时,可在这个部件前接入限幅电路。限幅电路按功能分为上限限幅电路、下限限幅电路和双向限幅电路3种 。在上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。同样,下限限幅电路在输入电压低于某一下限电平时产生限幅作用。双向限幅电路则在输入电压过高或过低的两个方向上均产生限幅作用。
直流斩波电路
直流斩波电路(DC Chopper)的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter),直流斩波电路(DC Chopper)一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。
直流变换电路
将幅值固定的直流电压变换成幅值和极性为可变的直流电压的变换电路。在生产中用以构成直流脉冲调速电源和开关式稳压电源。传统的直流调速系统是相控整流电路。它虽电路简单,但在深控下网侧功率因数下降、电网电流谐波含量高、电压调节的动态响应缓慢。直流变换电路采用斩控方式,斩波频率较高,可克服上述缺点,适用于机床伺服系统和公共交通车辆传动。开关式稳压电源与传统的线性直流稳压电源相比,效率高而体积小,成为新一代直流稳压电源。
直流变换电路按功率传输方向可分为单向电路和双向电路。前者的出端电压、电流平均值只能维持一种极性,又称单象限直流变换电路。后者的出端电压或电流平均值极性可变,即电能可在电源和负载间双向传输,又称双象限直流变换电路。若电路中出端电压和电流平均值的极性均可变,则称为四象限直流变换电路。单象限电路是常用的基本直流电压变换电路。它分为降压型电路(输出端电压平均值恒低于其输入端电压平均值)、升/降压型电路(输出端电压平均值既可低于也可高于其输入端电压平均值)、升压型电路(输出端电压平均值恒高于输入端电压平均值)和丘克电路(出入端电流均连续、所含谐波分量较小的升/降压型电路)。双象限电路包括输出电流极性可逆的变换电路和输出电压极性可逆的变换电路。前者的常用电路有级联电路(由降压型和升压型电路级联而成)和丘克电路(由单象限丘克电路反并联而成)。后者中若负载为直流电动机时,可构成具有再生制动能力的可逆调速系统 ,如吊车卷扬机构的拖动系统。提升重物时电机工作于正转的电动状态;降下重物时,电机反转,工作于发电状态(电磁转矩用作制动)。四象限电路在生产中用以构成具有摩擦负载的可逆直流电动机调速系统(具位能负载的可逆直流电动机调速系统可用双象限直流变换电路)。按其主电路结构可分为桥式电路(包括全桥电路、半桥电路)和推挽式电路(由两只双象限丘克电路按推挽连接构成,又称四象限丘克电路)。
发射极耦合逻辑电路
发射极耦合逻辑电路emitter coupled logic
以多个晶体管的发射极相互耦合加上射极跟随器组成的逻辑电路。简称ECL电路。ECL电路发展于20世纪50年代末期,是双极型集成电路的基本电路形式。它是一种电流型开关电路,电路中的晶体管工作在非饱和状态 。ECL电路的特点是:①开关速度快(1纳秒左右)。比通常的晶体管-晶体管逻辑电路开关速度快几倍。②可以很方便地组成、扩充电路的逻辑功能,节省元件数。缺点是电路功耗大、电平阈值电压随温度而漂移等 。ECL电路主要用于构成超高速集成电路,如高速、大型、巨型计算机等。
MOS电路
MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。 MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。
MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。CMOS数字集成电路电路主要分为4000(4500系列)系列、54HC/74HC系列、54HCT/74HCT系列等,实际上这三大系列之间的引脚功能、排列顺序是相同的,只是某些参数不同而已。例如,74HC4017与CD4017为功能相同、引脚排列相同的电路,前者的工作速度高,工作电源电压低。4000系列中目前最常用的是B系列,它采用了硅栅工艺和双缓冲输出结构。
Bi-CMOS是双极型CMOS(Bipolar-CMOS)电路的简称,这种门电路的特点是逻辑部分采用CMOS结构,输出级采用双极型三极管,因此兼有CMOS电路的低功耗和双极型电路输出阻抗低的优点。
印刷电路
印刷电路的发明人是奥地利的保•艾斯勒。艾斯勒是一名电气工程师,学习过印刷技术。印刷采用照相制版技术,即把拍摄下来的图片底版蚀刻在铜版或锌版上,用这种铜版或锌版去进行印刷,这对艾斯勒大有启发。他在制造电路板时,仿照印刷业中的制版方法先画出电子线路图,再把线路图蚀刻在一层铜箔的绝缘板上,不需要的铜箔部分被蚀刻掉,只留下导通的线路,这样,电子元件就通过铜箔形成的电路连接起来。1936年,艾斯勒用这种方法成功地装配了一台收音机。
艾斯勒的发明受到美国军方的重视,于是印刷电路首先被使用在近发引信上。近发引信是第二次世界大战期间美国物理学家范艾伦发明的一种无线电引信,它安装在高射炮弹上,使用时发射无线电波,只要目标进入杀伤范围之内,反射的无线电波就能使炮弹引爆。这种引信要求把许多电子元件紧凑地安装在体积很小的设备里,所以采用了印刷电路。盟军使用的装有近发引信的高射炮弹,给德国飞机以毁灭性的打击,印刷电路从此为世人所知。
印刷电路的好处是用不着在电路板上一次一次地进行焊接,免去了大量复杂的手工接线操作,而且能达到高精度,使电路板的生产效率大大提高。印刷业可以将大的图片缩小制版,印刷电路同样也可以把电子线路图缩小制版,从而为集成电路的产生准备了条件。今天,所有的计算机以及所有的电子产品,都使用了印刷电路。
现在的印刷电路是把导体图形用印制手段蚀刻或感光在一块绝缘基板上,是使电子元件互相连接的一种电子电路。它已经可以使用自动绘图仪迅速地把导体图形直接描绘在玻璃版上制版,然后印刷出来。印刷电路使电子设备的批量生产变得简单易行,使电子设备性能一致,质量稳定,结构紧凑。如果没有印刷电路工艺,50年代以来的电子设备就不可能取得这样大的进展。
直流稳压电路
一.稳压二极管稳压电路
这种稳压电路中利用硅稳压二极管的稳压特性,实现直流工作电压的稳压输出。这种直流稳压电路的稳压特性一半,往往只用于稳定局部的直流电压。在整机电源电路中一般不用。
二.串联调整管稳压电路
这种稳压电路利用了三极管集电极与发射极之间阻抗随基极电流大小变化而变化的特性,进行直流输出电压的自动调整,实现直流输出电压的稳定。在这种稳压电路中的三极管(调整管)一直处于导通状态。
三.开关型稳压电路
这是一种高性能的直流稳压电路,稳压原理比较复杂,在这种电路中的三极管(开关管)处于导通、截止两种状态的转换中,即工作在开关状态,所以开关型稳压电路由此得名。
四.三端集成稳压电路
这是一种集成电路的稳压电路,其功能是稳定直流输出电压。这种集成电路只有三根引脚,使用很方便,在许多场合都有着广泛应用。
电路交换
以电路联接为目的的交换方式是电路交换方式。电话网中就是采用电路交换方式。我们可以打一次电话来体验这种交换方式。打电话时,首先是摘下话机拨号。拨号完毕,交换机就知道了要和谁通话,并为双方建立连接,等一方挂机后,交换机就把双方的线路断开,为双方各自开始一次新的通话做好准备。因此,我们可以体会到,电路交换的动作,就是在通信时建立(即联接)电路,通信完毕时拆除(即断开)电路。至于在通信过程中双方传送信息的内容,与交换系统无关。
举例来说,我们假设有A、B两个城市,每个城市都有一部交换机并有一千个用户,两个交换机之间用100条中继线连接着。那么,如果我们说:在A城的两个用户之间建立一条电路,我们指的是把两条用户线路通过A城的交换机联接起来。但当我们说:在A城的一个用户和B城的一个用户之间建立一条电路时,我们指的就是由A城的用户线路经A城交换机联接到A、B城之间的一条中继线路,在经B城交换机联接到B城的用户线路上。由于经济上的原因,中继线路总是大大少于用户线路,并且为所有用户所共享。那么,当我们占用了一条中继线路以后,即使我们不传送信息,别人也不能使用,这就是电路交换最主要的缺点。
在电话通信中,由于讲话双方总是一个在说,一个在听,因此电路空闲时间占大约50%。
第一代计算机网络所使用的是什么工作机制?
电路交换就是通信的过程中维持的是实际的电子电路(物理线路),这条电子电路建立后用户始终占用从发送端到接收端的固定传输带宽
电路交换的机制有什么缺点?
从电路交换的工作原理看出,电路交换会占用固定带宽,因而限制了在线路上的流量以及连接数量。
整流电路
把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路按其组成器件可分为不控整流电路、半控整流电路和全控整流电路。后两种电路按其控制方式又可分为相控整流电路和斩波整流电路(见电力电子电路)。相控整流电路由于采用电网换相方式,不需要专门的换相电路,因而电路简单、工作可靠,得到广泛应用。但相控整流电路在控制用α较大时,功率因数较低,网侧电流谐波含量较大。因而在大功率调速传动中,低速运行时,采用斩控整流电路可解决功率因数变坏的问题。
整流电路(Rectifier)是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式各种各样;按组成的器件可分为不可控、半控和全控三种,按电路结构可分为桥式电路和零式电路,按交流输入相数分为单相电路和多相电路,按变压器二次侧电流的方向是单相或双相,又分为单拍电路和双拍电路;实用电路是上述的组合结构。
CMOS逻辑电路
CMOS是单词的首字母缩写,代表互补的金属氧化物半导体(Complementary Metal-Oxide-Semiconductor),它指的是一种特殊类型的电子集成电路(IC)。集成电路是一块微小的硅片,它包含有几百万个电子元件。术语IC隐含的含义是将多个单独的集成电路集成到一个电路中,产生一个十分紧凑的器件。在通常的术语中,集成电路通常称为芯片,而为计算机应用设计的IC称为计算机芯片。
电路
电路是由相互连接的电子电气器件,如电阻、电容、电感、二极管、三极管和开关等,构成的网络(或者:由电源、用电器、导线、电键等元件组成的电流路径)。电路的大小可以相差很大,小到硅片上的集成电路,大到输电网。根据所处理信号的不同,电子电路可以分为模拟电路和数字电路。
模拟电路对信号的电流和电压进行处理。最典型的模拟电路应用包括:放大电路、振荡电路、线性运算电路(加法、减法、乘法、除法、微分和积分电路)。
数字电路中信号大小只表示有限的状态,多数采用布尔代数逻辑对信号进行处理。典型数字电路有,振荡器、寄存器、加法器、减法器等。
所有的电路都遵循一些基本电路定律。
基尔霍夫电流定律: 流入一个节点的电流总和等于流出节点的电流总合。
基尔霍夫电压定律: 环路电压的总合为零。 <BR> 欧姆定律: 电阻两端的电压等于电阻阻值和流过电阻的电流的乘积。
诺顿定理: 任何由电压源与电阻构成的两端网络总可以等效为一个理想电流源与一个电阻的并联网络。
Thevenin定理: 任何由电压源与电阻构成的两端网络总可以等效为一个理想电压源与一个电阻的串联网络。
分析包含非线性器件的电路则需要一些更复杂的定律。实际电路设计中,电路分析更多的通过计算机模拟来完成。
厚膜电路
厚膜电路是集成电路的一种,是指将电阻、电感、电容、半导体元件和互连导线通过印刷、烧成和焊接等工序,在基板上制成的具有一定功能的电路单元。
集成电路分为厚膜电路、薄膜电路和半导体集成电路。厚膜电路与薄膜电路的区别有两点:其一是膜厚的区别,厚膜电路的膜厚一般大于10μm,薄膜的膜厚小于10μm,大多处于小于1μm;其二是制造工艺的区别,厚膜电路一般采用丝网印刷工艺,薄膜电路采用的是真空蒸发、磁控溅射等工艺方法。
厚膜电路的优势在于性能可靠,设计灵活,投资小,成本低,多应用于电压高、电流大、大功率的场合。
倍频器
使输出信号频率等于输入信号频率整数倍的电路。输入频率为f1,则输出频率为f0=nf1, 系数n为任意正整数,称倍频次数。倍频器用途广泛,如发射机采用倍频器后可使主振器振荡在较低频率,以提高频率稳定度;调频设备用倍频器来增大频率偏移;在相位键控通信机中,倍频器是载波恢复电路的一个重要组成单元。利用非线性电路产生高次谐波或者利用频率控制回路都可以构成倍频器。倍频器也可由一个压控振荡器和控制环路构成。它的控制电路产生一控制电压,使压控振荡器的振荡频率严格地锁定在输入频率 f1的倍乘值f0=nf1上 。倍频器有晶体管倍频器、变容二极管倍频器、阶跃恢复二极管倍频器等。用其他非线性电阻、电感和电容也能构成倍频器,如铁氧体倍频器等。非线性电阻构成的倍频器,倍频噪声较大。微波振荡器的频率稳定度不太高,在几十兆赫至百兆赫的晶体振荡器后面加上一级高次倍频器,可以获得具有晶振频率稳定度的微波振荡。另外,多级倍频器级联起来,可以使倍频次数大大提高。例如,二倍频器和三倍频器级联可产生六次倍频,m级N倍频器级联,总倍频次数为Nm。不过,倍频级数增加,倍频噪声也加大,故倍频上限仍受到限制。
非线性电路
含有除独立电源之外的非线性元件的电路。电工中常利用某些元器件的非线性。例如,避雷器的非线性特性表现为高电压下电阻值变小,这可用于保护雷电下的电工设备。非线性电路有6个特点:①稳态不唯一。用刀开关断开直流电路时,由于电弧的非线性使这时的电路出现由不同起始条件决定的两个稳态——一个有电弧,因而电路中有电流;另一个电弧熄灭,因而电路中无电流。②自激振荡。在有些非线性电路里,独立电源虽然是直流电源,电路的稳态电压(或电流)却可以有周期变化的分量,电路里出现了自激振荡。音频信号发生器的自激振荡电路中因有放大器这一非线性元件,可产生其波形接近正弦的周期振荡。③谐波。正弦激励作用于非线性电路且电路有周期响应时,响应的波形一般为非正弦的,含有高次谐波分量或次谐波分量。例如,整流电路中的电流常会有高次谐波分量。④跳跃现象。非线性电路中,参数(电阻、电感、振幅、频率等)改变到分岔值时响应会突变,出现跳跃现象。铁磁谐振电路中就会发生电流跳跃现象。⑤频率捕捉。正弦激励作用于自激振荡电路时,若激励频率与自激振荡频率二者相差很小,响应会与激励同步。⑥混沌 。20世纪20年代 ,荷兰人B.范德坡尔描述电子管振荡电路的方程,成为研究混沌现象的先声。
薄膜电路
薄膜电路是将整个电路的晶体管、二极管、电阻、电容和电感等元件以及它们之间的互连引线,全部用厚度在1微米以下的金属、半导体、金属氧化物、多种金属混合相、合金或绝缘介质薄膜,并通过真空蒸发、溅射和电镀等工艺制成的集成电路。薄膜集成电路中的有源器件,即晶体管,有两种材料结构形式:一种是薄膜场效应硫化镉或硒化镉晶体管,另一种是薄膜热电子放大器。更多的实用化的薄膜集成电路采用混合工艺,即用薄膜技术在玻璃、微晶玻璃、镀釉和抛光氧化铝陶瓷基片上制备无源元件和电路元件间的连线,再将集成电路、晶体管、二极管等有源器件的芯片和不使用薄膜工艺制作的功率电阻、大容量的电容器、电感等元件用热压焊接、超声焊接、梁式引线或凸点倒装焊接等方式,就可以组装成一块完整的集成电路。
无源滤波器
利用电感、电容和电阻的组合设计构成的电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;无源滤波器又称LC滤波器,单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。
接收器
接收器可以更大量采用数字集成电路。当然接收器的数字电路越靠近天线,便越能发挥接收的优势。因此有人认为可将模拟数字转换器置于射频系统的输出端,以便直接进行射频取样。这个设计看似较为可取,但这里产生另一个问题,我们不得不加以考虑。为了能够预先抑制不需要的带外信号,以及满足模拟数字转换器所要求的频率范围,已接收的信号在输入模拟数字转换器之前必须先加以滤波,以及接受自动增益控制。因此很多数字接收器采用折衷的办法,先由输出端的第一及第二中频级将模拟信号转为数字信号,使带外信号还未进入模拟数字转换器之前先行接受滤波,也确保部分信号在未进入模拟数字转换器之前先行在模拟级接受自动增益控制,以尽量避免带内信号过驱动模拟数字转换器,使信号在进行模拟数字转换之前可以达到最大的信号增益。此外,我们若采用中频取样及数字接收技术,便无需另外加设中频级如混频器、滤波器及放大器,有助减低成本,而且系统设计工程师若采用可编程数字滤波器取代固定的模拟滤波器,便可充分发挥设计上的灵活性。
延迟线电路
延迟线电路的定义
用于将电信号延迟一段时间的元件或器件称为延迟线。延迟线应在通带内有平坦的幅频特性和一定的相移特性(或延时频率特性),要有适当的匹配阻抗,衰减要小。广泛应用于雷达较精密昀示波器、彩色电视、电子计算机等领域
延迟线的分类
延迟线可分为两大类:即电磁延迟线和超声波延迟线,尤以後者可获较大时延。
1.电磁延迟线
利用阻抗匹配的均匀传输线可作为延迟线。电波在典型同轴电缆传输线传播速度约每米为0.005μS,欲要获得0.5μS的时延则需100米长同轴传输线。在实用上因体积大而感不便,此类同轴电缆传输线只适合在微波范围内作移相器或延迟线之用。根据时延公式延时时间等于LC的开方(L及C为传输线的等效电感电容,分别用微亨和微法作单位),由此可知若要增大时延T,只需加大电感和电容便可达到目的。以同轴电缆传输线为例,如欲改变该延迟时间则必须改变该线的基本结构。同轴线的直线形内导体用螺旅形线圈来取替(,并将高导磁率铁粉芯插入该线圈中,以增大其电感,更适量减少绝缘介质厚度便螺旋线与外导体稍紧密相靠,以适量增大电容量,这样该线的延迟时间便大大增长。同时根据公式阻抗的L/C的开方,因此了解到其特性阻抗也提高了。高阻抗螺旋型传输延迟线在大部份应用场合均比较低阻抗同轴电榄传输延迟线有利。至於延迟线其他特性,如截止频率、上升时间、失真、衰耗、体积等也十分重要,上述延迟线均属非平衡型,在某些特殊电路中特别需要用平衡型延迟线。双股螺旋型延迟线便是这类平衡延迟线,它除了具有非平衡型延迟线的高截止频率及低损失(衰耗)等优点外,并可增进稳定度。能理想运用在宽频带放大器内(例如在30MHz~100MHz宽频带同步示波器或数千MHz取样示波器的垂直放大系统内),能大大简化调整过程。由集中参数的电感和电容所组成昀网络也能获得我们所需的时延。由於在同样时延条件下体积较分布参数小及设计时取材容易,所以亦非常广泛应用在各种电路中。
2.超声波延迟线
在某些需要特长时延及高稳定度场合时,唯有让贤给超声波延迟线。从基本物理学中得知,超声波在固体及液体中传播速度约3千米/ 秒,相对比起电波在导体中慢,基於这原理,把电讯等转变成机械振动让其通过(例如玻璃及在另一端把机械振动转变圆电讯号),如此可以得到较长昀延迟时间。把电讯号输入石英或其他压电元件昀换能器使得变成机械振动,因换能器是紧密和玻璃耦台,所以振动波就传入玻璃棒中,在玻璃棒的另一端运用同类换能器将接收到机械波变回电讯号。值得一提的就是在PAL彩色电视系统内所采用超声波延迟线其精确度要求极高,在延迟时间63.943μS内变动率应>0.003μS。假如是采用普通玻璃则受温度影响较大,故需采用ISOPAUSTIC的玻璃来减低温度所引起昀影响。我们在研究PAL彩色电视的超声波延迟特性时,常能接触到工作频率、通频宽度、输入损失等数据,现在一起来研究一下。工作频率:PAL彩色电视中R-Y、B-Y在放送时被调在4.433619Hz,为了令PAL延迟系统分裂U及V两分量时不产生畸变,换能器的自然频率必须和载波一致。频宽:彩色鲜艳度除了有赖於色讯放大器及PAL延迟线激励电路的宽频外,最後取决於超声波延迟线的频宽,频宽由换能器品质决定及与玻璃棒耦合时的厚度有关。输入损失:电讯通过任何无源元件都有功率损失,这是大家所能理解的,超声波时延线也不能例外,损失多少由换能器和玻璃棒的品质及结构而定,应用中也要留意换能器本身具有一定潜布电容,如需详细全面研究可参考厂家供给等效电路。初期设计的棒状超声波延迟线体积稍长,为了缩短其长度常采V形传导反射式、M形传导反射式及五次传导反对式的改良延迟线,并精密磨控其长度,可准确获得所需时延。
电力电子电路
英文名称:power electronic circuit
由电力电子器件组成的、用以对工业电能进行变换和控制的大功率电子电路。由于电路中无旋转元、部件,故又称静止式变流电路,以区别于传统的旋转式变流电路(由电动机和发电机组成的变流电路)。两者相比,电力电子电路无磨损、低噪声、高效率,易于实现自动控制和生产,不需建造专门的地基。因而,20世纪60年代以后,已在世界范围基本上取代了旋转式变流电路。
由于电力电子电路所处理的是大容量工业电能,高效低耗是这类电路的主要目标。为减少电路内耗,电力电子器件工作于开关状态,因此电力电子电路实质上是一种大功率开关电路。为实现对电能的控制,器件的开关状态必须是可控的,因此它又是一种器件工作状态可由微弱信号进行控制的大功率开关电路。
电力电子电路按实现电能变换时电路的功能可分为整流电路(将交流电能转换为直流电能)、逆变电路(将直流电能转换为交流电能)、交流变换电路(包括交流调压电路和变频电路)、直流变换电路(改变直流电能的大小和方向)。按电能转换次数可分为基本变换电路和组合变换电路。前者经一次转换即可实现所需电能的变换,又称直接变换电路;后者经多次转换以实现所需电能的变换,又称间接变换电路。按组成电路的器件可分为不控型变换电路(由不控型器件组成,电路对变换的电能无控制能力)、半控型变换电路(由半控型器件组成,只能在电路具备关断晶闸管的条件下才能正常工作)、全控型变换电路(由自关断器件组成,比半控型电路具更佳的技术经济指标,但开关容量低于半控型)。电力电子电路按控制方式可分为4种:①相控电路。控制信号的变化表现为控制极脉冲相位的变化。②频控电路。信号的变化表现为控制极脉冲重复频率的变化。③斩控电路。控制信号的变化表现为控制极脉宽的变化。④组合控制电路。采用上述3种控制方式组合而成的控制方式。按电路中开关器件的工作频率可分为开关元件按电网频率(50或60赫)工作的低频电路和开关元件以远高于电网频率的载波频率工作的高频电路。
电力电子电路经历了20世纪30年代由气体闸流管和汞弧整流管组成的低频变流电路和由高频电子管组成的变流电路(统称第一代电力电子电路),60年代由晶闸管组成的半导体变流电路(第二代电力电子电路),80年代由可关断晶闸管(GTO)和双极型功率晶体管(GTR)等新型器件组成的第三代电力电子电路。电力电子电路正沿4个方向发展:①采用新型器件。②采用新的控制方式和手段。③采用新的电路结构。④采用新的分析方法和调试手段。
发射极耦合逻辑集成电路
发射极耦合逻辑集成电路 :
晶体管导通时工作在非饱和区的一种逻辑集成电路。有“或”和“或非”两种输出。可构成各种逻辑关系。特点为开关速度快,甚至达亚毫微秒,但功耗大,抗干扰力差。
深亚微米集成电路
深亚微米集成电路:通常把0.8-0.35μm及其以下称为纳米级.深亚微米制造的关键技术主要包括紫外光刻技术、等离子体刻蚀技术、离子注入技术、同互连技术等。目前,国际上集成电路的主流生产工艺技术为0.18-0.25μm,预计2006年主流加工技术将提高到0.1μm,2012年将达到0.05μm,进入纳米级。
大规模集成电路
集成电路是采用专门的设计技术和特殊的集成工艺,把构成半导体电路的晶体管、二极管、电阻、电容等基本元器件,制作在一块半导体单晶片(例如硅或砷化镓)或绝缘基片上,能完成特定功能或者系统功能的电路集合。超大规模集成电路是指集成度(每块芯片所包含的元器件数)大于10的集成电路。
E/DMOS集成电路
用耗尽型MOS晶体管作负载管,用增强型MOS晶体管作驱动管组成反相器,并以这种反相器作为基本单元而构成的各种集成电路。该电路具有速度快、电压摆幅大、集成密度高等特点,原因是在反相器中采用了耗尽型MOS 晶体管,使其负载特性接近于理想恒流源的特性,增强了驱动负载能力。E/D MOS 电路和CMOS(互补金属-氧化物-半导体)集成电路是MOS(金属-氧化物-半导体 )大规模集成电路中比较好的两种电路形式 ,各具特点。CMOS电路的功耗比E/D MOS电路约低两个数量级 ,而E/D MOS电路的集成密度比CMOS电路约提高一倍,并且制造工艺简单。
BiCMOS集成电路
由双极型门电路和互补金属-氧化物-半导体(CMOS)门电路构成的集成电路。特点是将双极(Bipolar)工艺和CMOS工艺兼容,在同一芯片上以一定的电路形式将双极型电路和CMOS电路集成在一起 ,兼有高密度 、低功耗和高速大驱动能力等特点 。高性能BiCMOS电路于20世纪80年代初提出并实现,主要应用在高速静态存储器、高速门阵列以及其他高速数字电路中,还可以制造出性能优良的模/数混合电路,用于系统集成。有人预言,BiCMOS集成电路是继CMOS集成电路形式之后最现实的下一代高速集成电路形式。
真空管集成电路
名称: 真空管集成电路
主题词或关键词: 信息科学 真空管 集成电路
内容
在电子技术中,第一代真空管技术已经过时了,但在90年代初,又出现了真空管集成电路。开发这种技术的目的,就是充分运用从硅芯片制作中发展起来的微细精加工技术,把三极真空管和四极真空管加以集成,从而把它们用于因受高频、高温、放射线影响而使半导体集成电路难以发挥作用的场合,充分发挥真空管技术的特长。微型真空管有独特的优点。真空管内的电子移动速度远高于固体器件,截止频率可以做得很高,电流在真空中流动和停止的转换速度可以达到10秒;而且它的阴极不需要加热,就能发射电子,寿命可长达10万小时,因此更适合于恶劣环境下工作;其输出功率比晶体管大得多。
线性集成电路
线性集成电路(linear integrated circuit)
以放大器为基础的一种集成电路。用线性一词表示放大器对输入信号的响应通常呈现线性关系。后来,这类电路又包括振荡器、定时器以及数据转换器等许多非线性电路、数字和线性功能相结合的电路。由于处理的信息都涉及到连续变化的物理量(模拟量),人们也把这种电路称为模拟集成电路。
20世纪60年代初,用半导体硅片制成第一个简单的集成放大器。1966年,第一个高性能的通用运算放大器问世。70年代各种高精度的数-模和模-数转换器成为数字技术和信息处理中的关键器件,得到广泛应用。
线性集成电路大致可划分为:
①通用电路,包括运算放大器、电压比较器、稳压电源电路等。
②工业控制与测量电路,包括定时器、波形发生器、检测器、模拟乘法器、模拟开关、马达驱动电路、功率控制电路等。
③数据转换电路,包括数-模和模-数转换器,电压-频率转换器等。
④通信电路,包括电话电路,移动通信电路等。
⑤消费类电路,包括电视机、录像机、音响电路等。实际上还有许多其他应用电路,如心脏起搏器等医疗用电路。线性集成电路大多数采用标准双极型工艺制造 ;后来,又开发出金属-氧化物-半导体(MOS)新工艺。
光电子集成电路
光电子集成电路(optoelectronic integrated circuit)
把光器件和电子器件集成在同一基片上的集成电路。简称OEIC。按功能分主要有电光发射集成电路和光电接收集成电路。前者是由电光驱动电路、有源光发射器件、导波光路、光隔离器、光调制器和光开关等组成;后者是由光滤波器、光放大器、光-电转换器以及相应的接收电路和器件集合而成。光电子集成电路从结构上可分为单片集成型和混合集成型两类。
前者是把光和电功能的器件都集成在单片上;后者则侧重光学元件的集成,然后再引入相应电路的电子器件。
光电子集成电路的优点是器件之间拼接紧凑,既能减弱因互连效应引起的响应延迟和噪声,从而提高传递信息的容量和高保真度,又能使器件微型化,便于信息工程的应用。
模拟集成电路
模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。模拟集成电路的主要构成电路有:放大器、滤波器、反馈电路、基准源电路、开关电容电路等。模拟集成电路设计主要是通过有经验的设计师进行手动的电路调试,模拟而得到,与此相对应的数字集成电路设计大部分是通过使用硬件描述语言在EDA软件的控制下自动的综合产生。
无导线集成电路
名称: 无导线集成电路
主题词或关键词: 信息科学 集成电路
内容
无导线集成电路是1994年出现的一种新型集成电路。现在的集成电路都是靠金属引线来实行元件之间互连的,随着集成度的提高,引线所占的面积越来越大,使布线问题变得更为突出。日本东芝公司研究了用量子效应器件集成为电路的可能性,将四个量子箱组成一个基本单元,再将多个单元联在一起构成集成电路。单元内部电子的运动变化将通过耦合到邻近单元,从而实现信号传递。模拟实验证实,这种无导线集成电路可以稳定工作,而且是低功耗的。
单片集成电路
名称: 单片集成电路
主题词或关键词: 信息科学 砷化镓 集成电路
内容
单片集成电路是独立实现单元电路功能,不需外接元器件的集成电路。要实现单片集成,需要解决一些不易微小型化的电阻、电容元件和功率器件的集成,以及各元件在电路性能上互相隔离的问题。
单片集成电路从小、中规模发展到大规模、超大规模集成电路,使平面工艺得到相应的发展。如掺杂技术由扩散改为离子注入,常规紫外光刻发展到电子束曝光、等离子体刻蚀和反应离子铣,常规气相外延改为超高真空分子束外延,采用化学气相沉积制造二氧化硅和多晶硅膜等。单片集成电路除向更高集成度发展外,也正向着线性、大功率、高频电路和模拟电路方向发展。
砷化镓集成电路
用半导体砷化镓(GaAs)器件构成的集成电路。构成GaAs集成电路的器件主要有肖特基势垒栅场效应管、高电子迁移率晶体管和异质结双极晶体管。20世纪70年代初,由于高质量的GaAs外延材料和精细光刻工艺的突破,使GaAs集成电路的制作得到突破性进展。同硅材料相比,GaAs材料具备载流子迁移率高、衬底半绝缘以及禁带较宽等特征,因此用它制成的集成电路具有频率高、速度快、抗辐射能力强等优点。它的缺点是材料缺陷较多,集成规模受到限制,成本较高。GaAs集成电路可分为模拟集成电路如单片微波集成电路和数字集成电路两类。前者主要用于雷达、卫星电视广播、微波及毫米波通信等领域,后者主要用于超高速计算机及光纤通信等系统。
立体集成电路
名称: 立体集成电路
主题词或关键词: 信息科学 集成电路
内容
立体集成电路即三维集成电路。20世纪60年代产生的集成电路是用平面工艺制作的,器件的工作区和引线按平面布置,所以称为二维集成电路。为了提高集成密度和减少外引线,80年代初出现了由多层叠积而成的三维电路结构,其电路各层之间均用绝缘层隔离,并通过穿孔互连,目前已达几十层之多,它分为叠层高密度结构和叠层多功能结构两种类型。由于将不同功能的器件和电路纵向立体地集成起来,从而得到新的功能部件,所以具有高密度、高速度、多功能和低功耗等特点,可作成大容量存储器和高速信号处理器。制作三维集成电路的关键是SOI(硅/绝缘层结构)技术。随着分子束外延、化学气相淀积和原子搬移等超微加工技术的发展,在半导体芯片内部实现器件布局的立体化也将逐步实现,以制作出密度更高的立体集成电路。
薄膜集成电路
名称: 薄膜集成电路
主题词或关键词: 信息科学 集成电路
内容
薄膜集成电路是将整个电路的晶体管、二极管、电阻、电容和电感等元件以及它们之间的互连引线,全部用厚度在1微米以下的金属、半导体、金属氧化物、多种金属混合相、合金或绝缘介质薄膜,并通过真空蒸发、溅射和电镀等工艺制成的集成电路。薄膜集成电路中的有源器件,即晶体管,有两种材料结构形式:一种是薄膜场效应硫化镉或硒化镉晶体管,另一种是薄膜热电子放大器。更多的实用化的薄膜集成电路采用混合工艺,即用薄膜技术在玻璃、微晶玻璃、镀釉和抛光氧化铝陶瓷基片上制备无源元件和电路元件间的连线,再将集成电路、晶体管、二极管等有源器件的芯片和不使用薄膜工艺制作的功率电阻、大容量的电容器、电感等元件用热压焊接、超声焊接、梁式引线或凸点倒装焊接等方式,就可以组装成一块完整的集成电路。
MOS集成电路
以金属-氧化物-半导体(MOS)场效应晶体管为主要元件构成的集成电路 。简称MOSIC 。1964年研究出绝缘栅场效应晶体管。直到1968年解决了MOS器件的稳定性,MOSIC得到迅速发展。与双极型集成电路相比,MOSIC具有以下优点:①制造结构简单,隔离方便。②电路尺寸小、功耗低适于高密度集成。③MOS管为双向器件,设计灵活性高。④具有动态工作独特的能力。⑤温度特性好。其缺点是速度较低、驱动能力较弱。一般认为MOS集成电路功耗低、集成度高,宜用作数字集成电路;双极型集成电路则适用作高速数字和模拟电路。
按晶体管的沟道导电类型,可分为P沟MOSIC、N沟MOSIC以及将P沟和N沟MOS晶体管结合成一个电路单元的互补MOSIC,分别称为PMOS 、NMOS和CMOS集成电路。随着工艺技术的发展,CMOS集成电路已成为集成电路的主流,工艺也日趋完善和复杂 ,由P阱或N阱CMOS发展到双阱CMOS工艺。80年代又出现了集双极型电路和互补金 属-氧化物-半导体(CMOS)电路优点的BiCMOS集成电路结构。按栅极材料可分为铅栅、硅栅、硅化物栅和难熔金属(如钼、钨)栅等MOSIC,栅极尺寸已由微米进入亚微米(0.5~1微米)和强亚微米(0.5微米以下)量级 。此外,还发展了不同的MOS集成电路结构的MOSIC:如浮栅雪崩注入MOS(FAMOS)结构,用于可擦写只读存贮器;扩散自对准MOS(DMOS)结构和V型槽MOS结构等,可满足高速、高电压要求。近年来发展了以蓝宝石为绝缘衬底的CMOS结构,具有抗辐照、功耗低和速度快等优点。MOSIC广泛用于计算机、通信、机电仪器、家电自动化、航空航天等领域,可使整机体积缩小、工作速度快、功能复杂、可靠性高、功耗低和成本便宜等。
混合集成电路
混合集成电路
由半导体集成工艺与薄(厚)膜工艺结合而制成的集成电路。混合集成电路是在基片上用成膜方法制作厚膜或薄膜元件及其互连线,并在同一基片上将分立的半导体芯片、单片集成电路或微型元件混合组装,再外加封装而成。它与分立元件电路相比,混合集成电路具有组装密度大、可靠性高、电性能好等特点。相对于单片集成电路,它设计灵活,工艺方便,便于多品种小批量生产,并且元件参数范围宽,精度高,稳定性好,可以承受较高电压和较大功率。混合集成电路的应用以模拟集成电路、微波集成电路、光电集成电路为主,也用于电压较高、电流较大的专用电路中。在微波领域中的应用尤为突出。
微波集成电路
名称: 微波集成电路
主题词或关键词: 信息科学 集成电路
内容
微波集成电路是工作在微波波段和毫米波波段,由微波无源元件、有源器件、传输线和互连线集成在一个基片上,具有某种功能的电路。可分为混合微波集成电路和单片微波集成电路。混合微波集成电路是采用薄膜或厚膜技术,将无源微波电路制作在适合传输微波信号的基片上的功能块。电路是根据系统的需要而设计制造的。常用的混合微波集成电路有微带混频器、微波低噪声放大器、功率放大器、倍频器、相控阵单元等各种宽带微波电路。单片微波集成电路是采用平面技术,将元器件、传输线、互连线直接制做在半导体基片上的功能块。砷化镓是最常用的基片材料。微波集成电路起始于20世纪50年代。微波电路技术由同轴线、波导元件及其组成的系统转向平面型电路的一个重要原因,是微波固态器件的发展。60~70年代采用氧化铝基片和厚膜薄膜工艺;80年代开始有单片集成电路。
数字集成电路
名称: 数字集成电路
主题词或关键词: 信息科学 元器件 集成电路
内容
数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。根据数字集成电路中包含的门电路或元、器件数量,可将数字集成电路分为小规模集成(SSI)电路、中规模集成MSI电路、大规模集成(LSI)电路、超大规模集成VLSI电路和特大规模集成(ULSI)电路。小规模集成电路包含的门电路在10个以内,或元器件数不超过100个;中规模集成电路包含的门电路在10~100个之间,或元器件数在100~1000个之间;大规模集成电路包含的门电路在100个以上,或元器件数在10~10个之间;超大规模集成电路包含的门电路在1万个以上,或元器件数在10~10之间;特大规模集成电路的元器件数在10~10之间。
三维集成电路
三维集成电路(three dimensional integrated circuit)
具有多层器件结构的集成电路。又称立体集成电路。现有的各种商品集成电路都是平面结构,即集成电路的各种单元器件一个挨一个地分布在一个平面上,称二维集成电路。
随着集成度不断提高,每片上的器件单元数量急剧增加,芯片面积增大,单元间连线的增长既影响电路工作速度又占用很多面积,严重影响集成电路进一步提高集成度和工作速度。于是产生三维集成的新技术思路。做法是:先在硅片表面做第一层电路,再在做好电路的硅片上生长一层绝缘层,在此绝缘层上再低温生长一层多晶硅,用再结晶技术使这层多晶硅变成单晶硅,至此单晶硅膜上做出第二层电路。这样依次往上做,就形成三维立体多层结构的集成电路。
三维集成的优点是:
①提高封装密度。多层器件重叠结构可成倍提高芯片集成度。
②提高电路工作速度。重叠结构使单元连线缩短,并使并行信号处理成为可能,从而实现电路的高速操作。
③可实现新型多功能器件及电路系统。如把光电器件等功能器件和硅集成电路集成在一起,形成新功能系统。日、美、欧共体各国都在致力于研究三维集成电路,并已制出一些实用的多层结构集成电路。立体电路是正在发展的技术。
专用集成电路
名称: 专用集成电路
主题词或关键词: 信息科学 集成电路
内容
专用集成电路是为特定用户或特定电子系统制作的集成电路。数字集成电路的通用性和大批量生产,使电子产品成本大幅度下降,推进了计算机通信和电子产品的普及,但同时也产生了通用与专用的矛盾,以及系统设计与电路制作脱节的问题。
同时,集成电路规模越大,组建系统时就越难以针对特殊要求加以改变。为解决这些问题,就出现了以用户参加设计为特征的专用集成电路,它能实现整机系统的优化设计,性能优越,保密性强。
它更适用于军事应用,能有效地解决军用集成电路的高性能、小批量、高可靠、快周期的矛盾。
现在大的集成电路生产厂都配有极强的计算机辅助电路设计能力,可根据用户的要求迅速设计制作专用集成电路,或接受用户的电路设计,甚至由用户直接设计工艺来制造满足用户需要的集成电路。
双极型集成电路
双极型集成电路
bipolar integrated circuit
以通常的NPN或PNP型双极型晶体管为基础的单片集成电路。它是1958年世界上最早制成的集成电路。双极型集成电路主要以硅材料为衬底,在平面工艺基础上采用埋层工艺和隔离技术,以双极型晶体管为基础元件。按功能可分为数字集成电路和模拟集成电路两类。在数字集成电路的发展过程中,曾出现了多种不同类型的电路形式,典型的双极型数字集成电路主要有晶体管-晶体管逻辑电路(TTL),发射极耦合逻辑电路(ECL),集成注入逻辑电路(I2L)。TTL电路形式发展较早,工艺比较成熟。ECL电路速度快,但功耗大。I2L电路速度较慢,但集成密度高。
同金属-氧化物-半导体集成电路相比,双极型集成电路速度快,广泛地应用于模拟集成电路和数字集成电路。
定制集成电路
定制集成电路
custom integrated circuit
按用户需要而专门设计制作的集成电路。简称ASIC。大量生产并标准化的通用集成电路一般不能满足全部用户的需要,研制新的电子系统常需各种具有特殊功能或特殊技术指标的集成电路。定制集成电路是解决这个问题的重要途径之一,是集成电路发展的一个重要方面。按制作方式可分为全定制集成电路和半定制集成电路。全定制集成电路是按照预期功能和技术指标而专门设计制成的集成电路,制造周期长、成本高 ,制成后不易修改 ,但性能比较理想 ,芯片面积小,集成度高。半定制集成电路制法很多,其中的门阵列法是先将标准电路单元如门电路加工成半成品(门阵列、门海等),然后按用户的技术要求进行设计,将芯片上的各标准电路单元连成各种功能电路,进而连成所要的大规模集成电路。采用此法,从预制的半成品母片出发,借助计算机辅助设计系统 ,只须完成一 、两块连线用的掩膜版再进行后工序加工,即可得到预期的电路 。 因此研制周期大大缩短 、成本降低、修改设计方便,宜于大批量生产。缺点是芯片面积利用率低,性能不如全定制集成电路。
集成电路
成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器、电容器等元器件,并按照多层布线或遂道布线的方法将元器件组合成完整的电子电路。它在电路中用字母“IC”(也有用文字符号“N”等)表示。
(一)按功能结构分类
集成电路按其功能、结构的不同,可以分为模拟集成电路和数字集成电路两大类。
模拟集成电路用来产生、放大和处理各种模拟信号(指幅度随时间边疆变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。例如VCD、DVD重放的音频信号和视频信号)。
(二)按制作工艺分类
集成电路按制作工艺可分为半导体集成电路和薄膜集成电路。
膜集成电路又分类厚膜集成电路和薄膜集成电路。
(三)按集成度高低分类
集成电路按集成度高低的不同可分为小规模集成电路、中规模集成电路、大规模集成电路和超大规模集成电路。
(四)按导电类型不同分类
集成电路按导电类型可分为双极型集成电路和单极型集成电路。
双极型集成电路的制作工艺复杂,功耗较大,代表集成电路有TTL、ECL、HTL、LST-TL、STTL等类型。单极型集成电路的制作工艺简单,功耗也较低,易于制成大规模集成电路,代表集成电路有CMOS、NMOS、PMOS等类型。
(五)按用途分类
集成电路按用途可分为电视机用集成电路。音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。
电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、AV/TV转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(CPU)集成电路、存储器集成电路等。
音响用集成电路包括AM/FM高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路、电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。
影碟机用集成电路有系统控制集成电路、视频编码集成电路、MPEG解码集成电路、音频信号处理集成电路、音响效果集成电路、RF信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。
录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。

长见识。。

很全面!
学习了!:lol

长见识!

够精华啊!

下来看看!辛苦了!11

很全面!
学习了!

长见识了:29bb :29bb :29bb

:29bb :29bb :29bb :29bb :29bb :29bb :29bb

:26bb :26bb :26bb

不看不知道,一看吓一跳!原以为没啥东西呢

基础知识还是很重要的啊

进来学习学习

长见识。。

Top