淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


Transmission Line Designer >
Transmission Lines  >
   Lange Coupler       


Lange Coupler

[spacer]

 

Keyword

Default

Unit

Description

N

Req (Phys)

m

Number of strips (2, 4, or 6)

W

Req (Phys)

m

Spacing between conductors

S

Req (Phys)

m

Spacing between strips

Sps

10

 

Number of substrips used in the analysis. Substrips/strip × number of strips 60

Z

50

ohm

Connecting line impedance to account for impedance change from feed line to coupler

P

Req (Elec Opt 2)

m

Physical length of the coupler

K

Req (Elec Opt 1)

dB

Coupling coefficient (positive)

Z0

Req (Elec Opt 1)

ohm

Impedance of the coupled lines

Ze

Req (Elec Opt 2)

ohm

Even-mode impedance of the coupled lines

Zo

Req (Elec Opt 2)

ohm

Odd-mode impedance of the coupled lines

E

0

deg

Electrical length of the coupler

Frequency

0

Hz

The frequency at which the quasistatic calculations are performed and reused at other analysis frequencies

H

Required

m

Substrate thickness

Er

Required

 

Relative dielectric constant

Thickness

0

m

Thickness of metallization

TAND

0

 

Dielectric loss tangent

Bond Wire Number

Required when activated

 

Number of bond wires used to connect the interdigital strips

 

Keyword

Default

Unit

Description

Bond Wire Diameter

Required when activated

m

Diameter of bond wires

Bond Wire Spacing

Required when activated

m

Spacing between bond wire centers

Line Disc. Width

Required when activated

m

Width of the connecting line to account for the impedance discontinuity in the calculations

 

Synthesis and Analysis

Synthesis of a Lange coupler proceeds by first selecting the number of strips for the desired structure. Two options exist for synthesis:

— Specify impedance, Z0, and the coupling coefficient, K.

— Specify the even-mode impedance, Ze, and the odd-mode impedance, Zo.

• The substrate parameters H, and ER must be entered prior to clicking the Synthesis button. The width of the strips, Width, and the spacing between them, Spacing, will be computed. Also, the alternate electrical option set will be computed (e.g., if Z0 and K are entered, Ze and Zo will be computed).

• For analysis, the parameters Width, Spacing, H, ER and either Physical Length or Frequency must be entered prior to clicking the Analysis button. The electrical properties, Z0, K, Zo, and Ze will be computed.

• Conversion from electrical length, E, to physical length, P, can be performed by entering a value for E and the frequency, Frequency. Click Synthesis to compute P. Similarly, to convert from physical length to electrical length, enter values for P and Frequency and click Analysis to compute E.

 

Dielectric Substrates

A dielectric substrate is defined by the parameters H, ER, and TAND. The substrate is assumed to be lossless unless TAND is specified and greater than zero.

 

Conductor Metallization

The default conductor used for analysis is gold whose resistivity is 2.44 mohm-cm. The thickness of the metal can be specified using the Thick parameter in the substrate group. The calculation uses the thickness for loss and impedance calculations.

 

Frequency Sweep Options

A frequency sweep can be performed to determine the response of the coupler over frequency. Type Start Stop Step (e.g., 4 6 5) and click Analysis.

 

Example

To select the Lange coupler, select TRL on the Product menu, click Microstrip, and click Lange Coupler. Set the units to mil and GHz. We will use the following parameters for synthesizing a 4 strip, 3-dB coupler at 10 GHz:

 

Number of Strips, N:

4

Impedance, Z0:

50 ohms

Coupling, K:

3 dB

Center Frequency:

10 GHz

Substrate thickness, H:

25 mil

Dielectric constant, ER:

10

Metal Thickness, Thick:

0.2 mil

 

 

Click the Synthesis button to determine the coupled line parameters:

 

Width, W

1.6545 mil

Spacing, S

2.0000 mil

Odd-mode impedance, Zo:

20.68 ohms

Even-mode impedance, Ze:

120.91 ohms

 

***** LANGE SYNTHESIS *****

COUPLING IMPEDANCES (OHMS) SUBSTRATE FULL STRIPS

DB EVEN ODD COUPLER ER H(mils) NO. T(mils) W(mils) S(mils)

3.00 120.91 20.68 50.00 10.00 25.0000 4 0.20000 1.6545 2.0000

 

To include the effects of a bond wire and connecting line parasitics, enter the following:

Bond Wire

Yes

Number

3

Diameter

.8 mil

Spacing

2 mil

Line Discontinuity

Yes

Width

24.5 mil

 

 

Clicking Analysis yields the following:

 

***** LANGE ANALYSIS *****

 

SUBSTRATE:

THICKNESS = 25.0000 mils

DIELECTRIC CONSTANT = 10.0000

LOSS TANGENT = 0.00000

STRIPS:

NUMBER = 4

WIDTH = 1.6545 mils

SPACING = 2.0000 mils

THICKNESS = 0.2000 mils

SUBSTRIPS = 10

PARASITICS:

NO. PARALLEL WIRES = 3

BOND WIRE DIAMETER = 0.8000 mils

WIRE SEPARATION = 2.0000 mils

WIDTH OF 50 OHM LINE = 24.5000 mils

W/H =0.066181 S/H =0.079999

W/H =0.071646 S/H =0.074534 EFFECTIVE VALUES DUE TO FINITE THICKNESS

*** DC CHARACTERISTICS

Z(0) = 50.00 Ohms

ZOE OHMS ZOO OHMS COUP DB Z(0) EFFKE EFFKO VE M/SEC VO M/SEC

131.56 22.81 3.04 54.79 6.378 5.502 1.1870E+8 1.2781E+8

*** CHARACTERISTICS WITH DISPERSION

CENTER FREQUENCY = 10000.0 MHZ

ZOE OHMS ZOO OHMS COUP DB Z(0) EFFKE EFFKO VE M/SEC VO M/SEC

134.08 23.18 3.03 55.75 6.380 5.510 1.1869E+8 1.2771E+8

EVEN MODE ATTENUATION ODD MODE ATTENUATION

db/in db/in

0.6087 2.1903 DIELECTRIC + CONDUCTOR

EFFECTIVE DIELECTRIC CONSTANT OF COUPLER = 5.9371

ESTIMATED COUPLING LENGTH = 121.098 mils

INDUCTANCE PER CROSSOVER LOCATION = 0.12526 nH

RESISTANCE PER CROSSOVER LOCATION = 0.04920 Ohms

*** RESPONSE WITH DISPERSION AND PARASITICS

FREQ. REFL. VSWR RET LOSS COUPL. PHASE THRU LOSS PHASE ISOLAT

(MHz) COEFF (dB) (dB) (Deg) (dB) (Deg) (dB)

10000 0.068 1.15 -23.3 3.23 -0.6 -3.11 -90.2 -24.66

DUE TO PARASITICS, THE CENTER FREQUENCY HAS SHIFTED DOWN FROM 10000 MHZ

 

 

To perform a frequency analysis from 4 GHz to 12 GHz in steps of 1 GHz, type 4 12 1 in the Frequency box. Then add coupling length P = 121.098 mil. The last part of the output will contain the analysis at each frequency. The 10 GHz center frequency analysis point is used to compute the quasistatic characteristics and reused at each analysis frequency.

 

FREQUENCY ANALYSIS OF COUPLER

FREQ. REFL. VSWR RET LOSS COUPL. PHASE THRU LOSS PHASE ISOLAT

(MHz) COEFF (dB) (dB) (Deg) (dB) (Deg) (dB)

4000 0.078 1.17 -22.1 5.99 42.2 -1.56 -45.6 -23.92

5000 0.081 1.18 -21.8 4.89 33.7 -2.02 -54.5 -23.42

6000 0.081 1.18 -21.8 4.17 26.0 -2.42 -62.5 -23.30

7000 0.079 1.17 -22.1 3.70 18.9 -2.74 -69.9 -23.41

8000 0.076 1.16 -22.4 3.41 12.2 -2.97 -76.9 -23.69

9000 0.072 1.16 -22.8 3.26 5.7 -3.10 -83.6 -24.11

10000 0.068 1.15 -23.3 3.23 -0.6 -3.11 -90.2 -24.66

11000 0.065 1.14 -23.8 3.33 -7.1 -3.02 -96.9 -25.34

12000 0.060 1.13 -24.4 3.56 -13.8 -2.81 -103.8 -26.03

Electrical Length [Eeff=(Effo+Effe)/2] = 35.78 deg

 




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com