![]() ![]() ![]() ![]() ![]() |
|
微波射频仿真设计 |
|
首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档 |
HFSS and Planar EM Simulators > Planar EM ReferencesPublications Describing the Numerical Methods Used in Ansoft Designer Planar EM [1] J.R. Mosig and F. Gardiol, "A Dynamical Radiation Model for Microstrip Structures," Academic Press, New York 1982. Advances in Electronics and Electron Physics, vol. 59 P. Hawkes pages 139-238. [2] J.R. Mosig, F. Gardiol, "Analytical and numerical techniques in the Green's function treatment of microstrip antennas and scatterers," IEE Proceedings (London), vol. 130, Part H, pp. 175-182, March 1983. [3] J.R. Mosig, F. Gardiol, "General integral equation formulation for microstrip antennas and scatterers," IEE Proceedings (London), vol. 132, part H, No. 7, pp.424-432, December 1985. [4] J.R. Mosig, "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microwave Theory Tech., MTT- 36, No. 2, pp. 314-323, February 1988. [5] J.R. Mosig, F. Gardiol, "Integral equation techniques for the dynamic analysis of microstrip discontinuities" (invited paper), Alta Frequenza., vol. 55, No 5, pp. 171-181, June 1988. [6] J.R. Mosig, R.C. Hall and F.E. Gardiol, "Numerical analysis of microstrip patch antennas,'' Chapter 8 of Handbook of Microstrip Antennas, eds. J.R. James and P.S. Hall, Peter Peregrinus Press, Stevenage, UK, 1989. [7] R.C. Hall and J.R. Mosig, "The analysis of coaxially fed microstrip antennas with electrically thick substrates,'' Electromagnetics, special issue on microstrip antennas, vol. 9, no. 4, pp. 367-384, Dec. 1989. [8] K. A. Michalski and D. Zheng, "Rigorous analysis of open microstrip lines of arbitrary cross-section in bound and leaky regimes," IEEE Trans, Microwave Theory Techn., Vol. 37, pp. 2005-2010, Dec. 1989. [9] R.C. Hall and J.R. Mosig, "Vertical monopoles embedded in a dielectric substrate," IEE Proceedings, Part H, Microwaves and Propagation, vol. 136, no. 6, pp. 462-468, Dec. 1989. [10] J.R. Mosig, "Integral equation Technique," chapter 3 in Numerical Techniques for Microwave and Millimeter Wave Passive Structures, pp. 133-214, T. Itoh ed., John Wiley, New York, 1989. [11] R.C. Hall and J.R. Mosig, "A rigorous feed model for a coaxially fed microstrip antenna," Electron. Lett., vol. 26, no. 1, pp. 64-66, Jan. 4 1990. [12] D. Zheng and K. A. Michalski, "Analysis of arbitrarily shaped coax-fed microstrip antennas - a hybrid mixed-potential integral equation approach," Microwave & Opt. Techn. Lett., vol. 3, pp. 200-203, June 1990. [13] K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. Antennas Propagat. vol. 38, pp. 335-344, Mar. 1990. [14] K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part II: Implementation and results for contiguous half-spaces," IEEE Trans. Antennas Propagat. vol. 38, pp. 345-352, Mar. 1990. [15] D. Zheng and K. A. Michalski, "Analysis of arbitrarily-shaped coax-fed microstrip antennas with thick substrates," Electron. Lett., vol. 26, No. 12, pp. 794-795, June 1990. [16] D. Zheng and K. A. Michalski, "Analysis of coaxially fed microstrip patch antennas of arbitrary shape with thick substrates," J. Electromagn. Waves and Appl., vol. 5, pp. 1303-1327, Dec. 1991. [17] K. A. Michalski and D. Zheng, "Analysis of microstrip resonators of arbitrary shape," IEEE Trans. Microwave Theory Techn., vol. 40, pp. 112-119, Jan. 1992. [18] J.R. Mosig, "Integral equation techniques for 3D microstrip structures," chapter 6 in Review of Radio Science, pp.127-153, W. Ross Stone, editor, Oxford University Press, London, 1993. [19] R.C. Hall and J.R. Mosig, "The analysis of aperture coupled patch antennas via a mixed potential integral equation," IEEE Trans. Antennas Propagat., vol. AP-44, no. 5, pp. 608-614, May 1996. [20] K.A. Michalski, J.R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propagat., vol. 45, no. 3, pp. 508-519, March 1997. [21] P. Otero, G.V. Eleftheriades, J.R. Mosig, "Modeling the coplanar transmission line excitation of planar antennas in the Method of Moments," MOTL, vol. 16, no. 4, pp. 219-225, Nov. 1997. [22] R. Pous and D. M. Pozar, "A frequency selective surface using aperture-coupled microstrip patches," IEEE Trans. Antennas Propagat., vol. 39, no. 12, pp. 1763-1769, Dec 1991 [23] A. Skrivervik, "Reseaux periodiques d'antennes microruban," These 1032(1992), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland. [24] A. Skrivervik and J.R. Mosig, "Analysis of finite phase arrays of microstrip patches," IEEE Trans. Antennas Propagat., vol. 41, no. 8, pp. 1105-1114, Aug 1993 [25] R. F. Harrington, Field Computation by Moment Methods, Robert Krieger Publishing, Malabar FL, 1982. [26] T. Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, John Wiley & Sons, New York, 1989. [27] A.F. Peterson, S.L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998. [28] S.M. Rao, D.R. Wilton, and A.W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shaped surfaces," IEEE Trans. Antennas Propagat., vol. 30, pp. 409-418, May 1982. [29] P.G. Huray, S.G. Pytel, S.H. Hall, F. Oluwafemi, R.I. Mellitz, D. Hua, and P. Ye, “Fundamentals of a 3-D “Snowball” Model for Surface Roughness Power Losses”, 11th Annual IEEE SPI Proceedings, May 13 – 16, 2007. [30] S.H. Hall, S.G. Pytel, P.G. Huray, D. Hua, A. Moonshiram, G. Brist, and E. Sijercic, “Multi-GHz, Causal Transmission Line Modeling Methodology with a Hemispherical Surface Roughness Approach”, IEEE Transactions on Microwave Theory and Techniques, December 2007 pp 2614 – 2624. [31] S.G. Pytel, P.G. Huray, A. Moonshiram, S.H. Hall, R.I. Mellitz, G. Brist, F. Oluwafemi, H.M. Meyer, L. Walker, and M. Garland, “Analysis of Copper Treatments and the Effects on Signal Propagation”, 58th Annual IEEE ECTC, May 26 – 30, 2008, pp 1144 – 1149. [32] S.G. Pytel, “Multi-gigabit data signaling rates for PWBs including dielectric losses and effects of surface roughness”, PhD. Dissertation, University of South Carolina, 2007. [33] P.G. Huray, O. Oluwafemi, J. Loyer, E. Bogatin, and X. Ye; "Impact of Copper Surface Texture on Loss: A Model That Works", DesignCon 2010, February 1 - 4, 2010.
HFSS视频教程 ADS视频教程 CST视频教程 Ansoft Designer 中文教程 |
Copyright © 2006 - 2013 微波EDA网, All Rights Reserved 业务联系:mweda@163.com |