淘宝官方店 推荐课程 在线工具 联系方式 关于我们 | |
微波射频仿真设计 Ansoft Designer 中文培训教程 | HFSS视频培训教程套装 |
|
首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档 |
Nexxim Simulator > BSIM3v3 MOSFET Model, LEVEL=49 and 53The syntax for a LEVEL 49 or 53 Berkeley Short-channel IGFET MOSFET (BSIM3v3) model is: .MODEL modelname NMOS LEVEL=val [parameter=val] ... or .MODEL modelname PMOS LEVEL=val [parameter=val] ... modelname is the name used by MOSFET instances to refer to this .MODEL statement. LEVEL=49 selects the HSPICEÔ-enhanced BSIM3 model. LEVEL=53 selects the Berkeley standard BSIM3v3.
Notes on BSIM3v3 Binning AdjustmentBinning is a way to extend a single device architecture by providing systematic variations on the device parameters. The philosophy is that when you vary the channel geometry, other parameters also change, in ways that can be completely characterized by the device manufacturer. The manufacturer or foundry provides a “design kit” that contains a set of .MODEL statements specifying the parameter settings for the different geometries. The design kit with the .MODEL statements can be included in the Nexxim design as a subcircuit. 1. A binning model is identified by giving the model name in the .MODEL statement the form modelname.n, where the entry n after the decimal point can be an integer or any other unique identifier. The MOSFET instance definition refers to the modelname without any extension. The netlist can contain any number of different binning models with the same base modelname. For example, three binning models could be named NMOSBSIM3.1 NMOSBSIM3.2, and NMOSBSIM3.3. The instance statement would reference simply NMOSBSIM3. Each of the available binning models corresponds to a range of channel lengths and widths specified with the LMIN, LMAX, WMIN, and WMAX model parameters. The ranges must not overlap. Each binning model typically specifies values for the model parameters that are related to the channel geometry variations. 2. The MOSFET instance statement must contain values for instance parameters L and W. The L and W parameters can be specified with variables so that a sweep of binning models can be performed. 3. The simulator finds the binning model to which the following conditions BOTH apply: The LMIN and LMAX model parameter range includes the value of instance parameter L (scaled by the instance parameter SCALE). The WMIN and WMAX model parameter range includes the value of instance parameter W (scaled by the instance parameter SCALE). If none of the available binning models matches the L and W instance parameters, simulation does not proceed. 4. Within a BSIM3v3 model, (binned or not) the binned model parameters are adjusted by the effective channel length and width. The formulas for the adjustment use the following symbols: N = value of the model parameter, for example A0. LN = value of the length dependence parameter, for example LA0. WN = value of the width dependence parameter, for example WA0. PN = value of the cross dependence parameter, for example PA0. Leff = effective channel length (calculated from L using scale factors and other adjustments). Weff = effective channel width (calculated from W using scale factors and other adjustments). LREFeff = effective reference channel length (calculated from model parameter LREF using scale factors and other adjustments). WREFeff = effective reference channel width (calculated from WREF using scale factors and other adjustments). When model parameter BINFLAG is greater than 0.9 AND the model parameters LREF and WREF are both greater than 0: Value = N + LN*(1/Leff-1/LREFeff) Otherwise: Value = N + LN*(1/Leff) + WN*(1/Weff) + PN*(1/(Leff*Weff)) 5. When model parameter BINUNIT equals 1, the effective parameters (Leff, Weff, LREFeff, and WREFeff) are scaled to units of microns. By default (BINUNIT not equal to 1), units are meters.
The unit for the length dependence parameters is the unit of the basic parameter divided by Meter.
The unit for the width dependence parameters is the unit of the basic parameter divided by Meter.
The unit for cross dependence parameters is the unit of the basic parameter divided by Meter2.
BSIM3v3 MOSFET Model Netlist Examples.model nenh nmos +Level=49 VERSION=3.22 +Tnom=27.0 capmod=3 paramchk=0 mobmod=1 +Nch=1e+16 Tox=5E-08 Xj=3.85E-08 +Lint=9.36e-8 Wint=0 +Vth0= .779 K1=1.04 K2= -3.83e-2 K3=50 +Dvt0= 2.812 Dvt1= 0.462 Dvt2=-9.17e-2 +Nlx= 3.52291E-08 W0= 1.163e-6 +K3b= 2.233 +Vsat= 86301.58 Ua= 6.47e-9 Ub= 4.23e-18 Uc=-4.706281E-11 +U0=400 wr=1 +A0= .3496967 Ags=.1 B0=0.546 B1= 1 + Dwg = -6.0E-09 Dwb = -3.56E-09 Prwb = -.213 +Keta=-3.605872E-02 A1= 2.778747E-02 A2= .9 +Voff=-6.735529E-02 NFactor= 1.139926 Cit= 1.622527E-04 +cj=0.00042 mj=0.5 pb=1.0 +cjsw=9e-12 mjsw=0.33 pbsw=1.0 +cjswg=9e-12 mjswg=0.33 pbswg=1.0 +cgsl=5.0e-10 ckappa=0.6 +cgdl=3.6e-10 +cf=0.0 cgso=5.2e-10 cgdo=5.2e-10 +cgbo=4.0e-10 +Cdsc=2.4e-4 +Cdscb= 0 Dvt0w = 0 Dvt1w = 0 Dvt2w = 0 +Cdscd = 0 Prwg = 0 +dlc=9.36e-8 dwc=0.0 +Eta0= 1.0281729E-02 Etab=-5.042203E-03 +Dsub= .31871233 +Pclm= 1.114846 Pdiblc1= 2.45357E-03 Pdiblc2= 6.406289E-03 +Drout= .31871233 Pscbe1= 5000000 Pscbe2= 5E-09 +Pdiblcb = -.234 +Pvag= 0 delta=0.01 +Wl = 0 Ww =0 Wwl = 0 +Wln = 0 Wwn = .2613948 Ll =0.0 +Lw = 0 Lwl = 0 Lln = .316394 +Lwn = 0 +kt1=-.3 kt2=-.051 +At= 22400 +Ute=-1.48 +Ua1= 3.31E-10 Ub1= 2.61E-19 Uc1= -3.42e-10 +Kt1l=0 Prt=764.3 +xpart=0.2 +JS =1e-2 JSW=0 +VFBCV=-1 VFB=-1 BSIM3v3.3 Model Equations1. I-V Model Equations1.1 Threshold Voltage
d1=0.001
1.2 Effective (Vgs-Vth)
1.3 Mobility For MOBMOD = 1:
For MOBMOD = 2:
For MOBMOD = 3:
1.4 Drain Saturation Voltage For Rds > 0 or l ¹ 1:
l = A1Vgsteff + A2
For Rds = 0 and l = 1:
1.5 Effective Vds
1.6 Drain Current Expression
1.7 Substrate Current
1.8 Polysilicon Depletion Effect
1.9 Effective Channel Length and Width
Leff = Ldrawn - 2dL
Weff = Wdrawn - 2dW
W'eff = Wdrawn - 2dW'
1.10 Source/Drain Resistance
1.11 Temperature Effects
2. Capacitance Model Equations2.1 Dimension Dependence
2.2 Overlap Capacitance 2.2.1 Source Overlap Capacitance
2.2.1.1 For CAPMOD = 0:
2.2.1.2 For CAPMOD = 1
2.2.1.2.1 For Vgs < 0:
2.2.1.2.2 For Vgs ³ 0:
2.2.1.3 For CAPMOD = 2
2.2.2 Drain Overlap Capacitance 2.2.2.1 For CAPMOD = 0:
2.2.2.2 For CAPMOD = 1 2.2.2.2.1 If Vgd < 0:
2.2.2.2.2 If Vgd ³ 0:
2.2.2.3 For CAPMOD = 2:
2.2.3 Gate Overlap Charge
2.3 Intrinsic Charges: 2.3.1 For CAPMOD = 0
2.3.1.1 Accumulation Region (Vgs < Vfbcv + Vbs)
Qsub = -Qg
Qinv = 0
2.3.1.2 Subthreshold Region (Vgs < Vth)
Qg = -Qb
Qinv = 0
2.3.1.3 Strong Inversion Region (Vgs > Vth)
2.3.1.3.1 50/50 Charge Partition
2.3.1.3.1.1 If Vds < Vdsat
2.3.1.3.1.2 Else (Vds ³ Vdsat)
2.3.1.3.2 Strong Inversion Region (Vgs > Vth): 40/60 Charge Partition
2.3.1.3.2.1 If Vds < Vdsat
Qs = -(Qg + Qb + Qd)
2.3.1.3.2.2 Else (Vds ³ Vdsat)
Qs = -(Qg + Qb + Qd)
2.3.1.3.3 Strong Inversion Region (Vgs > Vth): 0/100 Charge Partition
2.3.1.3.3.1 If Vds < Vdsat
Qs = -(Qg + Qb + Qd)
2.3.1.3.3.2 Else (Vds ³ Vdsat)
Qs = -(Qg + Qb)
Qd = 0
2.3.2 CAPMOD = 1 2.3.2.1 Flatband Voltage
2.3.2.2 If (Vgs < Vfb + Vbs + Vgsteffcv)
Qg1 = WactiveLactiveCox(Vgs - Vfb -Vbs -Vgsteffcv)
2.3.2.3 If (Vgs ³ Vfb + Vbs + Vgsteffcv)
Qb1 = -Qg1
2.3.2.4 If (Vds £ Vdsat)
2.3.2.4.1 50/50 Channel-charge Partition
2.3.2.4.2 40/60 Channel-charge Partition
Qd = -(Qg + Qb + Qs)
2.3.2.4.3 0/100 Channel-charge Partition
Qd = -(Qg + Qb + Qs)
2.3.2.5 If (Vds > Vdsat)
2.3.2.5.1 50/50 Channel-charge Partition
2.3.2.5.1 40/60 Channel-charge Partition
Qd = -(Qg + Qb + Qs)
2.3.2.5.1 0/100 Channel-charge Partition
Qd = -(Qg + Qb + Qs)
2.3.3 CAPMOD = 2
Qg = -(Qinv + Qacc + Qsub0 +dQsub)
Qb = Qacc + Qsub0 +dQsub
Qinv = Qs + Qd
V3 = Vfb-Vgb - d3, d3 = 0.02
Qacc = -WactiveLactiveCox(VFBeff -Vfb)
V4 = Vdsat,cv-Vds - d4, d4 = 0.02
2.3.3.1 50/50 Charge Partition
2.3.3.2 40/60 Channel Partition
2.3.3.3 0/100 Channel Partition
2.3.4 CAPMOD = 3 (Charge-Thickness Model)
d3 = 0.02
V0 = Vfb + Vfbeff -Vgs -d3
V3 = Vfb + Vbseff -Vgs -d3
V1 = Vdsat -Vds -d3
2.3.4.1 50/50 Charge Partition
2.3.4.2 40/60 Charge Partition
2.3.4.3 0/100 Charge Partition
HFSS视频教程 ADS视频教程 CST视频教程 Ansoft Designer 中文教程 |
Copyright © 2006 - 2013 微波EDA网, All Rights Reserved 业务联系:mweda@163.com |