淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


Nexxim Simulator >
Nexxim Component Models >
FETs (JFETs and MESFETs) >
   MESFET, Materka Model (Level 24)       

MESFET, Materka Model (Level 24)

The .MODEL statement for the Level 24 Materka MESFET models specifies values for one or more model parameters.

.MODEL modelname NJF LEVEL=24 [modelparameter=]val] ...

or

.MODEL modelname PJF LEVEL=24 [modelparameter=]val] ...

LEVEL=24 specifies the Materka MESFET model.

 


Level 24 Materka MESFET Model Parameters

Model Parameter

Description

Unit

Default

LEVEL

24 is required to select the Materka MESFET model

None

1 (default if LEVEL parameter is omitted)

AF

Flicker noise exponent

None

1.0

CDS

Drain-source capacitance

Farad

0.0

EG

Barrier height at 0°K (CAP model)

Volt

0.8

FCP

Coefficient for forward-bias depletion capacitance formulas

None

1.0

GAMA

Drain voltage-induced threshold voltage lowering coefficient

None

0.0

IDSS

Drain saturation current for Vgs=Vgss

Ampere

0.1

KFN

Flicker noise coefficient

None

0.0

RD

Drain ohmic resistance

Ohm

0.0

RG

Gate ohmic resistance

Ohm

0.0

RS

Source ohmic resistance

Ohm

0.0

TNOM

Nominal circuit temperature

°C

25.0

VP0

Threshold voltage

Volt

-2.0

XTI

Saturation current temperature exponent

None

2.0

EE (E)

Constant part of power law parameter

None

2.0

KE

Dependence of power law on Vgs

None

0.0

SL

Slope of the Vgs=0 drain characteristic in the linear region

None

0.15

KG

Drain dependence on Vgs in the linear region

None

0.0

SS

Slope of the drain characteristic in the linear region

None

0.0

T

Channel transit time delay

Second

0.0

DLVL

Model selector: 0 = Diode model,
1 = Raytheon model

None

0

IG0

Diode saturation current

Ampere

0.0

AFAG

Slope factor for diode saturation current

None

38.696

IB0

Breakdown saturation current

Ampere

0.0

AFAB

Slope factor for breakdown saturation current

None

0.0

VBC

Breakdown voltage

Volt

None

GMAX

Breakdown conductance

Siemen

0.0

K1D

Fitting parameter

None

0.0

K2D

Fitting parameter

None

0.0

K3D

Fitting parameter

None

0.0

R10

Intrinsic channel resistance for Vgs=0

Ohm

0.0

KR

Slope factor of intrinsic channel resistance

None

0.0

CLVL

Capacitance model selector:
1 = Materka model,
2 = Raytheon model

None

1

CDSD

Low-frequency trapping capacitance

Farad

0.0

RDSD

Channel trapping resistance

Ohm

None

C10

Gate-source Schottky barrier capacitance for Vgs=0

Farad

0.0

K1

Slope parameter for gate-source capacitance

None

1.25

MGS

Gate-source grading coefficient

None

0.5

C1S

Constant parasitic component of gate-source capacitance

Farad

0.0

CF0

Gate-drain feedback capacitance

Farad

0.0

KF

Slope parameter for gate-drain capacitance

None

1.25

MGD

Gate-drain grading coefficient

None

0.5

FCC

Forward-bias depletion capacitance coefficient

None

0.8

CGS0

Gate-source Schottky barrier capacitance for Vgs=0

Farad

0.0

CGD0

Gate-drain Schottky barrier capacitance for Vgs=0

Farad

0.0

VBI

Built-in barrier potential for Raytheon capacitance model

Volt

0.8

RI

Channel resistance for Raytheon capacitance model

Ohm

0.0

VMAX

Maximum voltage used for Vnew

Volt

0.5

VDELTA

Capacitance transition voltage

Volt

0.2

TMOD

Temperature model selector:
0 = quadratic, 1 = linear

None

0

AVT0

Vp0 linear temperature coefficient

None

0.0

ARI

RI linear temperature coefficient

None

0.0

ARG

RG linear temperature coefficient

None

0.0

ARD

RD linear temperature coefficient

None

0.0

ARS

RS linear temperature coefficient

None

0.0

TM

IDS linear temperature coefficient

None

0.0

TME

IDS power law temperature coefficient

None

0.0

M

Capacitance model grading coefficient (Note: This parameter M does not override the instance scaling parameter M)

None

0.5

BVT0

Vp0 quadratic temperature coefficient

None

0.0

BRI

RI quadratic temperature coefficient

None

0.0

BRG

RG quadratic temperature coefficient

None

0.0

BRD

RD quadratic temperature coefficient

None

0.0

BRS

RS quadratic temperature coefficient

None

0.0

AIDS

IDSS linear temperature coefficient

None

0.0

AGAM

GAMA linear temperature coefficient

None

0.0

AEE

EE linear temperature coefficient

None

0.0

AKE

KE linear temperature coefficient

None

0.0

ASL

SL linear temperature coefficient

None

0.0

AKG

KG linear temperature coefficient

None

0.0

ASS

SS linear temperature coefficient

None

0.0

AT

T linear temperature coefficient

None

0.0

AC10

C10 linear temperature coefficient

None

0.0

ACF0

CF0 linear temperature coefficient

None

0.0

AVBC

VBC linear temperature coefficient

None

0.0

ACGS

CGS linear temperature coefficient

None

0.0

ACGD

CGD linear temperature coefficient

None

0.0

AVBI

VBI linear temperature coefficient

None

0.0

AGMX

GMAX linear temperature coefficient

None

0.0

SN

Noise analysis selector, 1=on, 0=off

None

1

RGS

Gate-source ohmic resistance for Enhanced Raytheon model

Ohm

0.0

RGD

Gate-drain ohmic resistance for Enhanced Raytheon model

Ohm

0.0


 

 

Materka MESFET Model Netlist Example

.MODEL mesfet24 NJF LEVEL=24

+ idss=0.0649003 alpha1=1.5 gama=-0.0306278

 

Device Equations

Vgsi = Intrinsic gate-source voltage

Vdsi = Intrinsic drain-source voltage

Vgdi = Intrinsic gate-drain voltage

V1 = Voltage across Cgs and Ri

Vt = Thermal voltage k TJ/q

k = Boltzmann’s constant

q = Electron charge

TJ = Analysis temperature, Kelvin

 

Channel Current

 

 

[spacer]

 

 

 

 

 

Diodes

 

[spacer]

 

 

[spacer]

 

 

When DLVL = DIOD

 

[spacer]

 

 

When DLVL = RAY

 

[spacer]

 

 

 

 

 

Channel Resistance

When KR*Vgsi < 1.0

 

[spacer]

 

 

When KR*Vgsi >= 1.0

 

Ri = 0

 

Materka Capacitance Model (CLVL=MAT)

 

When K1Vgsi < FCC

 

[spacer]

 

 

When K1Vgsi >= FCC

 

[spacer]

 

 

When K1Vgdi < FCC

 

[spacer]

 

 

When K1Vgdi >= FCC

 

[spacer]

 

 

Raytheon Capacitance Model (CLVL=2)

 

Gate Charge

 

When Vnew > Vmax

 

 

 

[spacer]

 

 

 

 

 

 

 

[spacer]

 

 

 

 

 

When Vnew <= Vmax

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

Where:

 

[spacer]

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

 

 

 

Temperature Effects

 

For all TMOD:

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

Quadratic Model, TMOD=0

Define:

 

Dt = TJ - TNOM

 

[spacer]

 

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

Where Isat = IG0 or IB0 and a = ADAG or AFAB for the forward diode and breakdown efffects, respectively.

 

[spacer]

 

 

 

[spacer]

 

 

Where Vbi is 1/K1 or 1/KF.

 

[spacer]

 

 

Where Cj is C10 or CF0.

 

[spacer]

 

 

Where R is R10, RG, RD, or RS; AR and BR are the linear and quadratic temperature coefficients for the respective resistances.

 

Materka Model, TMOD=0, CLVL=1

 

[spacer]

 

 

[spacer]

 

 

Raytheon Model, TMOD=0, CLVL=2

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

 

 

Linear Model, TMOD=1

This model for the temperature dependence modifies diode saturation current using a physics-based equation and modifies several of the model coefficients using a linear function of Dt. The model is an extension of the paper by Anholt and Swirhun [2].

 

[spacer]

 

 

Where Isat = IG0 or IB0 and a = ADAG or AFAB for the forward diode and breakdown efffects, respectively.

 

[spacer]

 

 

 

[spacer]

 

 

Where P is a parameter (e.g., RG, RD, or C10) and AP is the temperature linear coefficient of that parameter (e.g., ARG, ARD, or AC10).

 

The Linear temperature coefficient for VMAX is calculated as

 

[spacer]

 

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

Materka Model, TMOD=1, CLVL=1:

 

[spacer]

 

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

Raytheon Model TMOD=1, CLVL=2:

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

References

1. A. Materka and T. Kacprzak, “Computer calculation of large-signal GaAs FET amplifier characteristics,” IEEE Transactions on Microwave Theory Tech., Vol. MTT-33, No. 2, pp. 129-135 Feb. 1985.

2. R.E. Anholt and S. E. Swirhun, “Experimental Investigation of the Temperature Dependence of GaAs FET Equivalent Circuits,” IEEE Trans. on ED, vol. 39, no. 9, pp. 2029-2036, Sept. 1992.

 




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com