淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


Nexxim Simulator >
Nexxim Component Models >
Diodes >
   Enhanced SPICE Diode Model, Level = 7       

Enhanced SPICE Diode Model, Level = 7

The syntax for an enhanced SPICE diode model is:

.MODEL modelname D LEVEL=7 [model_parameter=val] ... )

modelname is the name for used by diode instances to refer to this .MODEL statement.

 


Enhanced SPICE Diode Intrinsic Model Parameters

Model Parameter

Description

Unit

Default

LEVEL

7 is required to select the enhanced SPICE diode model

None

1

IS

Saturation current

Ampere

1.0e-14

N

Emission coefficient

None

1.0

IKF

High injection knee current

Ampere

1.0e37

IBV

Magnitude of current at the reverse breakdown voltage

Ampere

1.0e-11

BV

Magnitude of the reverse breakdown voltage

Volt

1.0e37

ISR

Recombination current parameter

Ampere

0.0

NR

Emission coefficient for Isr

None

2.0

NBV

Reverse breakdown ideality factor

None

1.0

NBVL

Low-level reverse breakdown ideality factor

None

1.0

IBVL

Low-level reverse breakdown knee current

Ampere

0.0

T (TT)

Transit time constant

Second

0.0

RS

Series resistance

Ohm

0.0


 


Enhanced SPICE Diode Model Capacitance Parameters

Model Parameter

Description

Unit

Default

CJ0

Zero-bias PN junction capacitance

Farad

0.0

FC

Coefficient for forward-bias depletion capacitance

None

0.5

VJ

Built-in junction potential

Volt

1.0

M

PN junction grading coefficient

None

0.5

GC1

Varactor capacitance polynomial coefficient 1

1/Volt

0.0

GC2

Varactor capacitance polynomial coefficient 2

1/Volt2

0.0

GC3

Varactor capacitance polynomial coefficient 3

1/Volt3

0.0


 


Enhanced SPICE Diode Model Temperature Parameters

Model Parameter

Description

Unit

Default

TNOM

Reference temperature

°C

25

XTI

IS temperature exponent

None

2.0

EG

Barrier height at reference temperature

Volt

0.8

TBV1

BV temperature coefficient (linear)

1/°C

0.0

TBV2

BV temperature coefficient (quadratic)

1/°C2

0.0

TRS1

RS temperature coefficient (linear)

1/°C

0.0

TRS2

RS temperature coefficient (quadratic)

1/°C2

0.0

TIKF

IKF temperature coefficient (linear)

1/°C

0.0


 


Enhanced SPICE Diode Model Noise Parameters

Model Parameter

Description

Unit

Default

KF

Flicker noise coefficient

None

0.0

AF

Flicker noise exponent

None

1.0

SN

Switch to turn device shot noise ON (1) or OFF (0)

None

1

FCP

Flicker noise frequency shape factor

None

1.0


 


Enhanced SPICE Diode Model DC/IV Parameters

Model Parameter

Description

Unit

Default

IMAX

Maximum forward and reverse current for the DC I-V curves

Ampere

1.0


 

Enhanced SPICE Diode Model Netlist Example

.MODEL ESD1 D LEVEL=7

 

 

Model Notes

1. The transit-time parameter, TT, can also be used to approximate the reverse-recovery time of a diode.

2. Diode breakdown can be modeled by specifying IBV and BV parameters.

3. The reverse-bias capacitance characteristics can be more accurately modeled than the common expression derived from PN junction theory. The capacitance grading coefficient exponent can be expressed as a polynomial function of voltage by specifying values for GC1, GC2, and GC3.

 

Area Effects

Id = AREA ´ Id

Isr= AREA ´ Isr

Ibv= AREA ´ Ibv

Ibvl = AREA ´ Ibvl

Cj = AREA ´ Cj

Rs = Rs / AREA

 

Device Equations

All components of the equivalent circuit are assumed to be functions of the junction potential voltage Vj. This voltage is automatically selected by the program as the only state-variable for the microwave diode model. The following expressions are used:

Vj = intrinsic junction voltage state variable

Vt = k TJ/q (thermal voltage)

k = Boltzmann’s constant

q = Electron charge

TJ = Analysis temperature (internally converted from °C to °K)

DC Current

Id = AREA(Ifwd-Irev)

Forward current Ifwd = If* Kinj + Irec * Kgen

Where:

Normal forward current

 

 

[spacer]

 

 

 

Recombination current

 

 

[spacer]

 

 

 

Injection factor when IKF=0

Kinj = 1

Injection factor when IKF<>0

 

[spacer]

 

 

Generation factor

 

[spacer]

 

 

 

Reverse Current Irev = Ib + Ibl

Where:

 

Reverse breakdown current

 

 

[spacer]

 

 

 

 

Low-level reverse breakdown current

 

 

[spacer]

 

 

Capacitance

 

 

 

 

Temperature Effects

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com