淘宝官方店     推荐课程     在线工具     联系方式     关于我们  
 
 

微波射频仿真设计   Ansoft Designer 中文培训教程   |   HFSS视频培训教程套装

 

Agilent ADS 视频培训教程   |   CST微波工作室视频教程   |   AWR Microwave Office

          首页 >> Ansoft Designer >> Ansoft Designer在线帮助文档


Ansoft Designer / Ansys Designer 在线帮助文档:


Nexxim Simulator >
Nexxim Component Models >
MOSFET Levels 49 through 54 >
   BSIM3v3 MOSFET Model, LEVEL=49 and 53       

BSIM3v3 MOSFET Model, LEVEL=49 and 53

The syntax for a LEVEL 49 or 53 Berkeley Short-channel IGFET MOSFET (BSIM3v3) model is:

.MODEL modelname NMOS LEVEL=val [parameter=val] ...

or

.MODEL modelname PMOS LEVEL=val [parameter=val] ...

modelname is the name used by MOSFET instances to refer to this .MODEL statement. LEVEL=49 selects the HSPICEÔ-enhanced BSIM3 model. LEVEL=53 selects the Berkeley standard BSIM3v3.

 


Level 49 or 53 MOSFET Flag/Selector Model Parameters

Model Parameter

Description

Unit

Default

LEVEL

49 selects the HSPICE-enhanced BSIM3v3 MOSFET model

53 selects the original Berkeley BSIM3v3 MOSFET model

None

1 (default if LEVEL parameter is omitted)

VERSION

BSIM3 version selector

None

3.24

ACM

Area calculation method

None

Level 49: 0

Level 53: 10

CALCACM

ACM calculation flag

None

0

CAPMOD

Capacitance model selector (0, 1, 2, 3)

For CAPMOD=0, level 49 and level 53 use different charge models

None

3

GDSNOI

Channel thermal Noise coefficient

None

1.0

MOBMOD

Mobility model selector

None

1

NLEV

Noise level selector

None

99

NOIMOD

Berkeley noise combination model selector

1=SPICE2 flicker, SPICE2 channel

2=BSIM flicker, BSIM channel

3=BSIM flicker, SPICE2 channel

4=SPICE2 flicker, BSIM channel

None

1

NQSMOD

Flag for NQS model

None

0

TLEV

Temperature model level selector

None

0

TLEVC

Temperature model level selector

None

0

UPDATE

Parasitics calculation flag

None

0

VFBFLAG

Flag for dependence of VFB on VTM0

None

0


 


Level 49 or 53 MOSFET Basic Model Parameters

Model Parameter

Description

Unit

Default

A0

Bulk charge effect coefficient for channel length

None

1.0

A1

1st nonsaturation effect parameter

Volt-1

0.0

A2

2nd nonsaturation effect parameter

None

1.0

ACDE

Exponential coefficient for charge thickness in the accumulation and depletion regions (CAPMOD = 3)

Meter/Volt

1.0

AGS

Gate bias coefficient of ABULK

Volt-1

0.0

ALPHA0

1st parameter of impact ionization current

Meter/Volt

0.0

ALPHA1

Substrate current parameter

Volt-1

0.0

B0

Bulk charge coefficient for channel width

Meter

0.0

B1

Bulk charge effect width offset

Meter

0.0

BETA0

2nd parameter of impact ionization current

Volt-1

30

CDSC

Drain-source to channel coupling capacitance

Farad/Meter2

2.4e-4

CDSCB

Body-bias sensitivity coefficient of CDSC

Farad/Volt-Meter2

0.0

CDSCD

Drain bias sensitivity of CDSC

Farad/Volt-Meter2

0.0

CIT

Interface trap capacitance

Farad/Meter2

0.0

COX

Oxide capacitance

Farad

Calculated

DELTA

Parameter for DC VDSeff

Volt

0.01

DL (XL)

Channel length shortening

Meter

0.0

DROUT

Channel length dependence of DIBL effect on ROUT

None

0.56

DSUB

DIBL coefficient in subthreshold region

None

DROUT

DVT0

1st short channel coefficient for VTH

None

2.2

DVT0W

1st narrow width coefficient for VTH at small L

None

0.0

DVT1

2nd short channel coefficient for VTH

None

0.53

DVT1W

2nd narrow width coefficient for VTH at small L

Meter-1

5.3e+6

DVT2

Body-bias coefficient of short channel effect on VTH

Volt-1

-0.032

DVT2W

3rd narrow width coefficient for VTH at small L

Volt-1

-0.032

DW (XW, WDEL)

Channel width narrowing

Meter

0.0

EG

Energy gap for PN junction diode

electron-Volt

TLEV=0 or 1: 1.11

TLEV=2: 1.16

ETA0

Subthreshold region DIBL coefficient

None

0.08

ETAB

Body-bias coefficient for the subthreshold DIBL effect

Volt-1

-0.07

GAP1

1st bandgap correction factor

eV/°K

7.02e-4

GAP2

2nd bandgap correction factor

°K

1108

GEO

Shared geometry parameter

None

0.0

HDIF

Length of heavily-doped diffusion

Meter

0.0

IJTH

Diode limiting current

[Not binnable]

Amp

0.1

K1

1st-order body bias factor

Amp/Meter

0.53

K2

2nd-order body bias factor

None

-0.0186

K3

Narrow width coefficient

None

80.0

K3B

Body effect coefficient of K3

Volt-1

0.0

KETA

Body-bias coefficient of bulk charge effect

Volt-1

-0.047

LD (DLAT, LATD)

Lateral diffusion

Meter

Calculated

LDIF

Length of lightly-doped region adjacent to gate

Meter

0.0

MOIN

Gate bias-dependent surface potential coefficient

None

15.0

NCH (NPEAK)

Peak doping concentration near interface

If NCH not specified and GAMMA is specified, NCH is calculated from GAMMA

cm-3

1.7e+17

(or calculated)

NFACTOR

Subthreshold region swing factor

None

1.0

NGATE

Poly gate doping concentration

cm-3

0.0

NI

Intrinsic concentration

cm-3

Calculated

NLX

Lateral nonuniform doping along channel

Meter

1.74e-7

NOFF

C-V parameter in VGSTeff, CV for weak-to-strong inversion transition

None

1.0

NSUB

Substrate doping concentration

cm-3

6.0e+16

PCLM

Channel length modulation parameter.

None

1.3

PDIBLC1 (PDIBL1)

Parameter for DIBL effect on ROUT

None

0.39

PDIBLC2 (PDIBL2)

Parameter for DIBL effect on ROUT

None

0.0086

PDIBLCB (PDIBLB)

Body bias coefficient of DIBL effect on ROUT

Volt-1

0.0

PRWB

Body effect coefficient of RDSW

1/Volt½

0.0

PRWG

Gate bias effect coefficient of RDSW

Volt-1

0.0

PSCBE1

1st substrate current-induced body effect parameter

Volt/Meter

4.24e+8

PSCBE2

2nd substrate current-induced body effect parameter

Meter/Volt

1.0e-5

PVAG

Gate dependence of Early voltage

None

0.0

RD

Drain resistance

Ohm

0.0

RDC

Additional drain contact resistance

Ohm

0.0

RDSW

Parasitic source-drain resistance per unit width

Ohm/mMeterWR

0.0

RS

Source resistance

Ohm

0.0

RSC

Additional source contact resistance

Ohm

0.0

RSH

Source/drain sheet resistance per square. [Not binnable]

Ohm/square

0.0

SCALM

Scale factor for model parameters

None

1.0 (or global SCALM option)

TNOM (TREF)

Temperature at which parameters are extracted

°C

25

TOX

Gate oxide thickness

Meter

1.50e-8

TOXM

Reference gate oxide thickness

Meter

TOX

U0

Low field mobility at T = TREF = TNOM

cm2/Volt-sec

NMOS: 670

PMOS: 250

UA

1st-order mobility degradation coefficient

Meter/Volt

2.25e-9

UB

2nd-order mobility degradation coefficient

Meter2/Volt2

5.87e-19

UC

Body bias sensitivity coefficient of mobility

MOBMOD=1, 2: Meter/Volt2

MOBMOD=3: Volt-1

MOBMOD=1, 2:
-4.65e-11

MOBMOD=3:
-0.0465

VBM

Maximum substrate bias, for VTH calculation

Volt

-3.0

VFB

DC flatband voltage

Volt

-1.0

VOFF

Offset voltage in subthreshold region at large W and L

Volt

-0.08

VOFFCV

C-V parameter in VGSTeff, CV for weak-to-strong inversion transition

None

0.0

VSAT

Saturation velocity of carrier at T = TREF = TNOM

Meter/sec

8.0e+4

VTH0 (VTHO)

Threshold voltage of long-channel device at VBS=0 and large L

Volt

Calculated

WMLT

Width diffusion shrink reduction factor

None

1.0

W0

Narrow width effect coefficient

Meter

2.5e-6

WR

Width offset from Weff for RDS calculation

None

1.0

XJ

Junction depth

Meter

1.5e-7


 


Level 49 or 53 MOSFET AC and Capacitance Model Parameters

Model Parameter

Description

Unit

Default

CF

Fringing field capacitance

Farad/Meter

Calculated

CGBO

Gate-to-bulk overlap capacitance per unit gate length [Not binnable]

Farad/Meter

Calculated

CGDL (CGD1)

Lightly-doped region drain-gate overlap capacitance per unit gate width

Farad/Meter

0.0

CGDO

Non-LDD region drain-gate overlap capacitance per unit gate width
[Not binnable]

Farad/Meter

Calculated

CGSL (CGS1)

Lightly-doped region source-gate overlap capacitance per unit gate width

Farad/Meter

0.0

CGSO

Non-LDD region source-gate overlap capacitance per unit gate width
[Not binnable]

Farad/Meter

Calculated

CKAPPA

Coefficient for lightly-doped region overlap capacitance

Volt

0.6

CLC

Constant term for short-channel model

Meter

1.0e-7

CLE

Exponential term for short-channel model

None

0.6

DLC

Length offset fitting parameter from CV [Not binnable]

Meter

LINT

DWB

Coefficient of Weff substrate body bias dependence [Not binnable]

Meter/Volt½

0.0

DWC

Width offset fitting parameter from CV

Meter

WINT

DWG

Coefficient of Weff gate dependence

Meter/Volt

0.0

LINT

Length offset fitting parameter from I-V without bias [Not binnable]

Meter

0.0

LL

Coefficient of length dependence for width offset [Not binnable]

MeterLLN

0.0

LLC

Coefficient of length dependence for C-V channel length offset

MeterLLN

LL

LLN

Exponent of length dependence of width offset [Not binnable]

None

1.0

LW

Coefficient of width dependence for length offset [Not binnable]

MeterLWN

0.0

LWC

Coefficient of width dependence for C-V channel length offset

MeterLWN

LW

LWL

Coefficient of length and width cross term for length offset [Not binnable]

MeterLWN+LLN

0.0

LWLC

Coefficient of length and width cross terms for C-V channel length offset

MeterLLN+LWN

LWL

LWN

Exponent of width dependence for width offset [Not binnable]

None

1.0

VFBCV

Flat-band voltage [CAPMOD=0]

Volt

-1.0

WINT

Width offset fitting parameter from I-V without bias [Not binnable]

Meter

0.0

WL

Coefficient of length dependence for width offset

MeterWLN

0.0

WLC

Coefficient of length dependence for C-V channel width offset

MeterWLN

WL

WLN

Exponent of length dependence of width offset [Not binnable]

None

1.0

WW

Coefficient of width dependence for width offset [Not binnable]

MeterWWN

0.0

WWC

Coefficient of width dependence for C-V channel width offset

MeterWWN

WW

WWL

Coefficient of length and width cross term for width offset [Not binnable]

MeterWWN+WLN

0.0

WWLC

Coefficient of length and width cross terms for C-V channel width offset

MeterWLN+WWN

WWL

WWN

Exponent of width dependence for width offset [Not binnable]

None

1.0

XPART

Selector for gate capacitance drain versus source charge sharing coefficient

0, 0.4 = 40/60
0.5 = 50/50
³ 1 = 0/100
Any other value < 1 = 40/60

[Not binnable]

None

Level 49:
1 (0/100)

Level 53:
0 (40/60)


 


Level 49 or 53 MOSFET Temperature Model Parameters

Model Parameter

Description

Unit

Default

AT

Temperature coefficient for saturation velocity

Meter/sec

3.3e+4

KT1

Temperature coefficient for VTH

Volt

-0.11

KT1L

Temperature coefficient channel length dependence of VTH

Meter-Volt

0.0

KT2

Body bias coefficient of VTH temperature effect

None

0.022

PRT

Temperature coefficient for RDSW

Ohm/mMeter

0.0

TCJ (CTA)

Temperature coefficient of CJ

[Not binnable]

°K-1

0.0

TCJSW (CTP)

Temperature coefficient of CJSW

[Not binnable]

°K-1

0.0

TCJSWG

Temperature coefficient of CJSWG

[Not binnable]

°K-1

0.0

TNOM

Temperature at which parameters are extracted

°C

25 (or global TNOM option)

TPB (PTA)

Temperature coefficient of PB

[Not binnable]

Volt/°K

0.0

TPBSW (PTP)

Temperature coefficient of PBSW

[Not binnable]

Volt/°K

0.0

TPBSWG

Temperature coefficient of PBSWG

[Not binnable]

Volt/°K

0.0

TRD

Temperature coefficient for drain resistance

Ohm/°K

0.0

TRS

Temperature coefficient for source resistance

Ohm/°K

0.0

UA1

Temperature coefficient of UA

Meter/Volt

4.31e-9

UB1

Temperature coefficient of UB

Meter2/Volt2

-7.61e-18

UC1

Temperature coefficient of UC

MOBMOD=1, 2: Meter/Volt2

MOBMOD=3: Volt-1

MOBMOD=1, 2:
-5.6e-11

MOBMOD=3:
-0.056

UTE

Mobility temperature exponent

None

-1.5

XTI

Junction current temperature coefficient

None

ACM=0, 1, 2, 3: 0.0

ACM=10, 11, 12, 13: 3.0


 

 


Level 49 or 53 MOSFET Binning Adjustment Model Parameters

Model Parameter

Description

Unit

Default

BINUNIT

Binning unit selector

1 = microns

0 = Meters

None

1

BINFLAG

<=0.9 Do not use adjustment parameters LREF, WREF

>0.9 Use LREF, WREF

None

0.0

LREF

Reference channel length

Meter

0.0

WREF

Reference channel width

Meter

0.0

LMAX

Upper bound of channel length range

Meter

1.0

LMIN

Lower bound of channel length range

Meter

0.0

WMAX

Upper bound of channel width range

Meter

1.0

WMIN

Lower bound of channel width range

Meter

0.0


Notes on BSIM3v3 Binning Adjustment

Binning is a way to extend a single device architecture by providing systematic variations on the device parameters. The philosophy is that when you vary the channel geometry, other parameters also change, in ways that can be completely characterized by the device manufacturer. The manufacturer or foundry provides a “design kit” that contains a set of .MODEL statements specifying the parameter settings for the different geometries. The design kit with the .MODEL statements can be included in the Nexxim design as a subcircuit.

1. A binning model is identified by giving the model name in the .MODEL statement the form modelname.n, where the entry n after the decimal point can be an integer or any other unique identifier. The MOSFET instance definition refers to the modelname without any extension. The netlist can contain any number of different binning models with the same base modelname. For example, three binning models could be named NMOSBSIM3.1 NMOSBSIM3.2, and NMOSBSIM3.3. The instance statement would reference simply NMOSBSIM3.

Each of the available binning models corresponds to a range of channel lengths and widths specified with the LMIN, LMAX, WMIN, and WMAX model parameters. The ranges must not overlap.

Each binning model typically specifies values for the model parameters that are related to the channel geometry variations.

2. The MOSFET instance statement must contain values for instance parameters L and W. The L and W parameters can be specified with variables so that a sweep of binning models can be performed.

3. The simulator finds the binning model to which the following conditions BOTH apply:

• The LMIN and LMAX model parameter range includes the value of instance parameter L (scaled by the instance parameter SCALE).

• The WMIN and WMAX model parameter range includes the value of instance parameter W (scaled by the instance parameter SCALE).

If none of the available binning models matches the L and W instance parameters, simulation does not proceed.

4. Within a BSIM3v3 model, (binned or not) the binned model parameters are adjusted by the effective channel length and width. The formulas for the adjustment use the following symbols:

N = value of the model parameter, for example A0.

LN = value of the length dependence parameter, for example LA0.

WN = value of the width dependence parameter, for example WA0.

PN = value of the cross dependence parameter, for example PA0.

Leff = effective channel length (calculated from L using scale factors and other adjustments).

Weff = effective channel width (calculated from W using scale factors and other adjustments).

LREFeff = effective reference channel length (calculated from model parameter LREF using scale factors and other adjustments).

WREFeff = effective reference channel width (calculated from WREF using scale factors and other adjustments).

When model parameter BINFLAG is greater than 0.9 AND the model parameters LREF and WREF are both greater than 0:

Value = N + LN*(1/Leff-1/LREFeff)
+ WN*(1/Weff-1/WREFeff)
+ PN*(1/(Leff-1/LREFeff)*(1/(Weff-1/WREFeff)))

Otherwise:

Value = N + LN*(1/Leff) + WN*(1/Weff) + PN*(1/(Leff*Weff))

5. When model parameter BINUNIT equals 1, the effective parameters (Leff, Weff, LREFeff, and WREFeff) are scaled to units of microns. By default (BINUNIT not equal to 1), units are meters.

 


Level 49 or 53 MOSFET Process Model Parameters

Model Parameter

Description

Unit

Default

GAMMA1

Body effect coefficient near the surface

Volt½

Calculated

GAMMA2

Body effect coefficient in the bulk

Volt½

Calculated

VBX

Bulk-source bias voltage at which the depletion region thickness equals XT

Volt

Calculated

XT

Doping depth

Meter

1.55e-7


 

 


Level 49 or 53 MOSFET Noise Model Parameters

Model Parameter

Description

Unit

Default

AF

Flicker noise exponent

None

1.0

EF

Flicker noise frequency exponent

None

1.0

EM

Flicker noise parameter

Volt-Meter

4.1e+7

KF

Flicker noise coefficient

None

0.0

NOIA

Noise parameter A for flicker noise calculation (NOIMOD = 2 or 3)
[Not binnable]

None

NMOS: 1.0e+20

PMOS: 9.9e+18

NOIB

Noise parameter B for flicker noise calculation (NOIMOD = 2 or 3)
[Not binnable]

None

NMOS: 5.0e+4

PMOS: 2.4e+3

NOIC

Noise parameter C for flicker noise calculation (NOIMOD = 2 or 3)
[Not binnable]

None

NMOS: -1.4e-12

PMOS: 1.4e-12


 


Level 49 or 53 MOSFET Junction Model Parameters

Model Parameter

Description

Unit

Default

CBD

Zero-bias bulk-drain junction capacitance

Farad

0.0

CBS

Zero-bias bulk-source junction capacitance

Farad

0.0

CJ

Zero-bias bottom junction capacitance

[Not binnable]

Farad/Meter2

5.79e-4

CJSW

Zero-bias sidewall bulk junction capacitance

[Not binnable]

Farad/Meter

0.0

CJSWG (CJGATE)

Zero-bias sidewall bulk junction capacitance grading coefficient

[Not binnable]

Farad/Meter

CJSW

JS

Bulk junction saturation current density

[Not binnable]

Amp/Meter2

0.0

JSW

Sidewall bulk junction saturation current density

[Not binnable]

Amp/Meter

0.0

MJ

Bulk junction grading coefficient

[Not binnable]

None

0.5

MJSW

Sidewall bulk junction grading coefficient

[Not binnable]

None

0.33

MJSWG

Gate-edge sidewall bulk junction grading coefficient

[Not binnable]

Volt

MJSW

N (NJ)

Emission coefficient

[Not binnable]

None

1

NDS

Reverse bias slope coefficient

None

1.0

PB

Bulk junction contact potential

[Not binnable]

Volt

1.0

PBSW (PHP)

Sidewall bulk junction contact potential

[Not binnable]

Volt

1.0

PBSWG

Gate-edge sidewall bulk junction contact potential

[Not binnable]

Volt

PBSW

TT

Transition time

Second

0.0

VNDS

Reverse diode current transition point

Volt

-1.0


 


Level 49 or 53 MOSFET Nonquasistatic (NQS) Model Parameter

Model Parameter

Description

Unit

Default

ELM

Elmore constant

None

5.0


 


Level 49 or 53 MOSFET Stress Effect Model Parameter

Model Parameter

Description

Unit

Default

STIMOD

Stress effect model selector

None

0.0

SAREF (SA0)

Reference distance between OD edge to poly of the one side

Meter

1.0e-6

SBREF (SB0)

Reference distance between OD edge to poly of the other side

Meter

1.0e-6

WLOD

Width parameter for stress effect

Meter

0.0

KU0

Mobility degradation enhancement coefficient for stress effect

Meter

0.0

KVSAT

Saturation velocity enhancement coefficient for stress effect

Meter

0.0

KVTH0

Threshold shift parameter for stress effect

Volt-Meter

0.0

TKU0

Temperature coefficient of KU0

None

0.0

LLODKU0

Length parameter for U0 stress effect

None

0.0

WLODKU0

Width parameter for U0 stress effect

None

0.0

LLODVTH

Length parameter for Vth stress effect

None

0.0

WLODVTH

Width parameter for Vth stress effect

None

0.0

LKU0

Length dependence of KU0

MeterLLODKU0

0.0

WKU0

Width dependence of KU0

MeterWLODKU0

0.0

PKU0

Cross-term dependence of KU0

MeterLLODKU0+WLODKU0

0.0

LKVTH0

Length dependence of KVTH0

MeterLLODVTH

0.0

WKUVTH0

Width dependence of KVTH0

MeterWLODVTH

0.0

PKVTH0

Cross-term dependence of KVTH0

MeterLLODVTH+WLODVTH

0.0

STK2

K2 shift factor related to Vth0 change

Meter

0.0

LODK2

K2 shift modification actorfor stress effect

None

1.0

STETA0

ETA0 shift factor related to Vth0 change

Meter

0.0

LODETA0

ETA0 shift modification actorfor stress effect

None

1.0


The unit for the length dependence parameters is the unit of the basic parameter divided by Meter.


Level 49 or 53 Length Dependence Parameters

Model Parameter

Description

Default

La0

Length dependence of a0

0.0

La1

Length dependence of a1

0.0

La2

Length dependence of a2

0.0

Lacde

Length dependence of acde

0.0

Lags

Length dependence of ags

0.0

Lalpha0

Length dependence of alpha0

0.0

Lalpha1

Length dependence of alpha1

0.0

Lat

Length dependence of at

0.0

Lb0

Length dependence of b0

0.0

Lb1

Length dependence of b1

0.0

Lbeta0

Length dependence of beta0

0.0

Lcdsc

Length dependence of cdsc

0.0

Lcdscb

Length dependence of cdscb

0.0

Lcdscd

Length dependence of cdscd

0.0

Lcf

Length dependence of cf

0.0

Lcgdl

Length dependence of cgdl

0.0

Lcgsl

Length dependence of cgsl

0.0

Lcit

Length dependence of cit

0.0

Lckappa

Length dependence of ckappa

0.0

Lclc

Length dependence of clc

0.0

Lcle

Length dependence of cle

0.0

Ldelta

Length dependence of delta

0.0

Ldrout

Length dependence of drout

0.0

Ldsub

Length dependence of dsub

0.0

Ldvt0

Length dependence of dvt0

0.0

Ldvt0w

Length dependence of dvt0w

0.0

Ldvt1

Length dependence of dvt1

0.0

Ldvt1w

Length dependence of dvt1w

0.0

Ldvt2

Length dependence of dvt2

0.0

Ldvt2w

Length dependence of dvt2w

0.0

Ldwb

Length dependence of dwb

0.0

Ldwg

Length dependence of dwg

0.0

Lelm

Length dependence of elm

0.0

Leta0

Length dependence of eta0

0.0

Letab

Length dependence of etab

0.0

Lgamma1

Length dependence of gamma1

0.0

Lgamma2

Length dependence of gamma2

0.0

Lk1

Length dependence of k1

0.0

Lk2

Length dependence of k2

0.0

Lk3

Length dependence of k3

0.0

Lk3b

Length dependence of k3b

0.0

Lketa

Length dependence of keta

0.0

Lkt1

Length dependence of kt1

0.0

Lkt1l

Length dependence of kt1l

0.0

Lkt2

Length dependence of kt2

0.0

Lmoin

Length dependence of moin

0.0

Lnch (Lnpeak)

Length dependence of nch

0.0

Lnfactor

Length dependence of nfactor

0.0

Lngate

Length dependence of ngate

0.0

Lnlx

Length dependence of nlx

0.0

Lnoff

Length dependence of noff

0.0

Lnsub

Length dependence of nsub

0.0

Lpclm

Length dependence of pclm

0.0

Lpdibl1

Length dependence of Pdibl1

0.0

Lpdibl2

Length dependence of Pdibl2

0.0

Lpdiblb

Length dependence of Pdiblb

0.0

Lprt

Length dependence of prt

0.0

Lprwb

Length dependence of prwb

0.0

Lprwg

Length dependence of prwg

0.0

Lpscbe1

Length dependence of pscbe1

0.0

Lpscbe2

Length dependence of pscbe2

0.0

Lpvag

Length dependence of pvag

0.0

Lrdsw

Length dependence of rdsw

0.0

Lu0

Length dependence of u0

0.0

Lua

Length dependence of ua

0.0

Lua1

Length dependence of ua1

0.0

Lub

Length dependence of ub

0.0

Lub1

Length dependence of ub1

0.0

Luc

Length dependence of uc

0.0

Luc1

Length dependence of uc1

0.0

Lute

Length dependence of ute

0.0

Lvbm

Length dependence of vbm

0.0

Lvbx

Length dependence of vbx

0.0

Lvfb

Length dependence of vfb

0.0

Lvfbcv

Length dependence of vfbcv

0.0

Lvoff

Length dependence of voff

0.0

Lvoffcv

Length dependence of voffcv

0.0

Lvsat

Length dependence of vsat

0.0

Lvth0

Length dependence of vth0

0.0

Lw0

Length dependence of w0

0.0

Lwr

Length dependence of wr

0.0

Lxj

Length dependence of xj

0.0

Lxt

Length dependence of xt

0.0


The unit for the width dependence parameters is the unit of the basic parameter divided by Meter.


Level 49 or 53 Width Dependence Model Parameters

Model Parameter

Description

Default

Wa0

Width dependence of a0

0.0

Wa1

Width dependence of a1

0.0

Wa2

Width dependence of a2

0.0

Wacde

Width dependence of acde

0.0

Wags

Width dependence of ags

0.0

Walpha0

Width dependence of alpha0

0.0

Walpha1

Width dependence of alpha1

0.0

Wat

Width dependence of at

0.0

Wb0

Width dependence of b0

0.0

Wb1

Width dependence of b1

0.0

Wbeta0

Width dependence of beta0

0.0

Wcdsc

Width dependence of cdsc

0.0

Wcdscb

Width dependence of cdscb

0.0

Wcdscd

Width dependence of cdscd

0.0

Wcf

Width dependence of cf

0.0

Wcgdl

Width dependence of cgdl

0.0

Wcgsl

Width dependence of cgsl

0.0

Wcit

Width dependence of cit

0.0

Wckappa

Width dependence of ckappa

0.0

Wclc

Width dependence of clc

0.0

Wcle

Width dependence of cle

0.0

Wdelta

Width dependence of delta

0.0

Wdrout

Width dependence of drout

0.0

Wdsub

Width dependence of dsub

0.0

Wdvt0

Width dependence of dvt0

0.0

Wdvt0w

Width dependence of dvt0w

0.0

Wdvt1

Width dependence of dvt1

0.0

Wdvt1w

Width dependence of dvt1w

0.0

Wdvt2

Width dependence of dvt2

0.0

Wdvt2w

Width dependence of dvt2w

0.0

Wdwb

Width dependence of dwb

0.0

Wdwg

Width dependence of dwg

0.0

Welm

Width dependence of elm

0.0

Weta0

Width dependence of eta0

0.0

Wetab

Width dependence of etab

0.0

Wgamma1

Width dependence of gamma1

0.0

Wgamma2

Width dependence of gamma2

0.0

Wk1

Width dependence of k1

0.0

Wk2

Width dependence of k2

0.0

Wk3

Width dependence of k3

0.0

Wk3b

Width dependence of k3b

0.0

Wketa

Width dependence of keta

0.0

Wkt1

Width dependence of kt1

0.0

Wkt1l

Width dependence of kt1l

0.0

Wkt2

Width dependence of kt2

0.0

Wmoin

Width dependence of moin

0.0

Wnch (Wnpeak)

Width dependence of nch

0.0

Wnfactor

Width dependence of nfactor

0.0

Wngate

Width dependence of ngate

0.0

Wnlx

Width dependence of nlx

0.0

Wnoff

Width dependence of noff

0.0

Wnsub

Width dependence of nsub

0.0

Wpclm

Width dependence of pclm

0.0

Wpdibl1

Width dependence of Pdibl1

0.0

Wpdibl2

Width dependence of Pdibl2

0.0

Wpdiblb

Width dependence of Pdiblb

0.0

Wprt

Width dependence of prt

0.0

Wprwb

Width dependence of prwb

0.0

Wprwg

Width dependence of prwg

0.0

Wpscbe1

Width dependence of pscbe1

0.0

Wpscbe2

Width dependence of pscbe2

0.0

Wpvag

Width dependence of pvag

0.0

Wrdsw

Width dependence of rdsw

0.0

Wu0

Width dependence of u0

0.0

Wua

Width dependence of ua

0.0

Wua1

Width dependence of ua1

0.0

Wub

Width dependence of ub

0.0

Wub1

Width dependence of ub1

0.0

Wuc

Width dependence of uc

0.0

Wuc1

Width dependence of uc1

0.0

Wute

Width dependence of ute

0.0

Wvbm

Width dependence of vbm

0.0

Wvbx

Width dependence of vbx

0.0

Wvfb

Width dependence of vfb

0.0

Wvfbcv

Width dependence of vfbcv

0.0

Wvoff

Width dependence of voff

0.0

Wvoffcv

Width dependence of voffcv

0.0

Wvsat

Width dependence of vsat

0.0

Wvth0

Width dependence of vth0

0.0

Ww0

Width dependence of w0

0.0

Wwr

Width dependence of wr

0.0

Wxj

Width dependence of xj

0.0

Wxt

Width dependence of xt

0.0


The unit for cross dependence parameters is the unit of the basic parameter divided by Meter2.


Level 49 or 53 MOSFET Cross Dependence Model Parameters

Model Parameter

Description

Default

Pa0

Cross dependence of a0

0.0

Pa1

Cross dependence of a1

0.0

Pa2

Cross dependence of a2

0.0

Pacde

Cross dependence of acde

0.0

Pags

Cross dependence of ags

0.0

Palpha0

Cross dependence of alpha0

0.0

Palpha1

Cross dependence of alpha1

0.0

Pat

Cross dependence of at

0.0

Pb0

Cross dependence of b0

0.0

Pb1

Cross dependence of b1

0.0

Pbeta0

Cross dependence of beta0

0.0

Pcdsc

Cross dependence of cdsc

0.0

Pcdscb

Cross dependence of cdscb

0.0

Pcdscd

Cross dependence of cdscd

0.0

Pcf

Cross dependence of cf

0.0

Pcgdl

Cross dependence of cgdl

0.0

Pcgsl

Cross dependence of cgsl

0.0

Pcit

Cross dependence of cit

0.0

Pckappa

Cross dependence of ckappa

0.0

Pclc

Cross dependence of clc

0.0

Pcle

Cross dependence of cle

0.0

Pdelta

Cross dependence of delta

0.0

Pdrout

Cross dependence of drout

0.0

Pdsub

Cross dependence of dsub

0.0

Pdvt0

Cross dependence of dvt0

0.0

Pdvt0w

Cross dependence of dvt0w

0.0

Pdvt1

Cross dependence of dvt1

0.0

Pdvt1w

Cross dependence of dvt1w

0.0

Pdvt2

Cross dependence of dvt2

0.0

Pdvt2w

Cross dependence of dvt2w

0.0

Pdwb

Cross dependence of dwb

0.0

Pdwg

Cross dependence of dwg

0.0

Pelm

Cross dependence of elm

0.0

Peta0

Cross dependence of eta0

0.0

Petab

Cross dependence of etab

0.0

Pgamma1

Cross dependence of gamma1

0.0

Pgamma2

Cross dependence of gamma2

0.0

Pk1

Cross dependence of k1

0.0

Pk2

Cross dependence of k2

0.0

Pk3

Cross dependence of k3

0.0

Pk3b

Cross dependence of k3b

0.0

Pketa

Cross dependence of keta

0.0

Pkt1

Cross dependence of kt1

0.0

Pkt1l

Cross dependence of kt1l

0.0

Pkt2

Cross dependence of kt2

0.0

Pmoin

Cross dependence of moin

0.0

Pnch

Cross dependence of nch

0.0

Pnfactor

Cross dependence of nfactor

0.0

Pngate

Cross dependence of ngate

0.0

Pnlx

Cross dependence of nlx

0.0

Pnoff

Cross dependence of noff

0.0

Pnsub

Cross dependence of nsub

0.0

Ppclm

Cross dependence of pclm

0.0

Ppdiblc1 (Ppdibl1)

Cross dependence of Pdiblc1

0.0

Ppdiblc2 (Ppdibl2)

Cross dependence of Pdiblc2

0.0

Ppdiblcb (Ppdiblb)

Cross dependence of Pdiblcb

0.0

Pprt

Cross dependence of prt

0.0

Pprwb

Cross dependence of prwb

0.0

Pprwg

Cross dependence of prwg

0.0

Ppscbe1

Cross dependence of pscbe1

0.0

Ppscbe2

Cross dependence of pscbe2

0.0

Ppvag

Cross dependence of pvag

0.0

Prdsw

Cross dependence of rdsw

0.0

Pu0

Cross dependence of u0

0.0

Pua

Cross dependence of ua

0.0

Pua1

Cross dependence of ua1

0.0

Pub

Cross dependence of ub

0.0

Pub1

Cross dependence of ub1

0.0

Puc

Cross dependence of uc

0.0

Puc1

Cross dependence of uc1

0.0

Pute

Cross dependence of ute

0.0

Pvbm

Cross dependence of vbm

0.0

Pvbx

Cross dependence of vbx

0.0

Pvfb

Cross dependence of vfb

0.0

Pvfbcv

Cross dependence of vfbcv

0.0

Pvoff

Cross dependence of voff

0.0

Pvoffcv

Cross dependence of voffcv

0.0

Pvsat

Cross dependence of vsat

0.0

Pvth0

Cross dependence of vth0

0.0

Pw0

Cross dependence of w0

0.0

Pwr

Cross dependence of wr

0.0

Pxj

Cross dependence of xj

0.0

Pxt

Cross dependence of xt

0.0


 

BSIM3v3 MOSFET Model Netlist Examples

.model nenh nmos

+Level=49 VERSION=3.22

+Tnom=27.0 capmod=3 paramchk=0 mobmod=1

+Nch=1e+16 Tox=5E-08 Xj=3.85E-08

+Lint=9.36e-8 Wint=0

+Vth0= .779 K1=1.04 K2= -3.83e-2 K3=50

+Dvt0= 2.812 Dvt1= 0.462 Dvt2=-9.17e-2

+Nlx= 3.52291E-08 W0= 1.163e-6

+K3b= 2.233

+Vsat= 86301.58 Ua= 6.47e-9 Ub= 4.23e-18 Uc=-4.706281E-11

+U0=400 wr=1

+A0= .3496967 Ags=.1 B0=0.546 B1= 1

+ Dwg = -6.0E-09 Dwb = -3.56E-09 Prwb = -.213

+Keta=-3.605872E-02 A1= 2.778747E-02 A2= .9

+Voff=-6.735529E-02 NFactor= 1.139926 Cit= 1.622527E-04

+cj=0.00042 mj=0.5 pb=1.0

+cjsw=9e-12 mjsw=0.33 pbsw=1.0

+cjswg=9e-12 mjswg=0.33 pbswg=1.0

+cgsl=5.0e-10 ckappa=0.6

+cgdl=3.6e-10

+cf=0.0 cgso=5.2e-10 cgdo=5.2e-10

+cgbo=4.0e-10

+Cdsc=2.4e-4

+Cdscb= 0 Dvt0w = 0 Dvt1w = 0 Dvt2w = 0

+Cdscd = 0 Prwg = 0

+dlc=9.36e-8 dwc=0.0

+Eta0= 1.0281729E-02 Etab=-5.042203E-03

+Dsub= .31871233

+Pclm= 1.114846 Pdiblc1= 2.45357E-03 Pdiblc2= 6.406289E-03

+Drout= .31871233 Pscbe1= 5000000 Pscbe2= 5E-09

+Pdiblcb = -.234

+Pvag= 0 delta=0.01

+Wl = 0 Ww =0 Wwl = 0

+Wln = 0 Wwn = .2613948 Ll =0.0

+Lw = 0 Lwl = 0 Lln = .316394

+Lwn = 0

+kt1=-.3 kt2=-.051

+At= 22400

+Ute=-1.48

+Ua1= 3.31E-10 Ub1= 2.61E-19 Uc1= -3.42e-10

+Kt1l=0 Prt=764.3

+xpart=0.2

+JS =1e-2 JSW=0

+VFBCV=-1 VFB=-1

BSIM3v3.3 Model Equations

1. I-V Model Equations

1.1 Threshold Voltage

 

[spacer]

 

 

 

 

 

 

 

 

 

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

d1=0.001

 

[spacer]

 

 

 

 

[spacer]

 

 

 

1.2 Effective (Vgs-Vth)

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

 

 

[spacer]

 

 

1.3 Mobility

For MOBMOD = 1:

 

[spacer]

 

 

 

 

For MOBMOD = 2:

 

[spacer]

 

 

 

 

For MOBMOD = 3:

 

[spacer]

 

 

 

 

1.4 Drain Saturation Voltage

For Rds > 0 or l ¹ 1:

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

l = A1Vgsteff + A2

 

 

 

 

For Rds = 0 and l = 1:

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

1.5 Effective Vds

 

[spacer]

 

 

1.6 Drain Current Expression

 

[spacer]

 

 

 

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

1.7 Substrate Current

 

[spacer]

 

 

 

 

1.8 Polysilicon Depletion Effect

 

[spacer]

 

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

 

1.9 Effective Channel Length and Width

 

Leff = Ldrawn - 2dL

 

Weff = Wdrawn - 2dW

 

W'eff = Wdrawn - 2dW'

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

1.10 Source/Drain Resistance

 

 

[spacer]

 

 

 

 

1.11 Temperature Effects

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

[spacer]

 

 

[spacer]

 

 

 

[spacer]

 

 

[spacer]

 

 

2. Capacitance Model Equations

2.1 Dimension Dependence

 

[spacer]

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

2.2 Overlap Capacitance

2.2.1 Source Overlap Capacitance

 

2.2.1.1 For CAPMOD = 0:

 

[spacer]

 

 

 

2.2.1.2 For CAPMOD = 1

 

2.2.1.2.1 For Vgs < 0:

 

[spacer]

 

 

2.2.1.2.2 For Vgs ³ 0:

 

[spacer]

 

 

2.2.1.3 For CAPMOD = 2

 

[spacer]

 

 

 

[spacer]

 

 

2.2.2 Drain Overlap Capacitance

2.2.2.1 For CAPMOD = 0:

 

[spacer]

 

 

 

2.2.2.2 For CAPMOD = 1

2.2.2.2.1 If Vgd < 0:

 

[spacer]

 

 

 

2.2.2.2.2 If Vgd ³ 0:

 

[spacer]

 

 

 

2.2.2.3 For CAPMOD = 2:

 

[spacer]

 

 

 

[spacer]

 

 

2.2.3 Gate Overlap Charge

 

[spacer]

 

 

 

 

 

2.3 Intrinsic Charges:

2.3.1 For CAPMOD = 0

 

2.3.1.1 Accumulation Region (Vgs < Vfbcv + Vbs)

 

[spacer]

 

 

Qsub = -Qg

 

Qinv = 0

 

2.3.1.2 Subthreshold Region (Vgs < Vth)

 

[spacer]

 

 

 

Qg = -Qb

 

Qinv = 0

 

2.3.1.3 Strong Inversion Region (Vgs > Vth)

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

 

2.3.1.3.1 50/50 Charge Partition

 

2.3.1.3.1.1 If Vds < Vdsat

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

 

 

 

 

 

2.3.1.3.1.2 Else (Vds ³ Vdsat)

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

 

 

2.3.1.3.2 Strong Inversion Region (Vgs > Vth): 40/60 Charge Partition

 

2.3.1.3.2.1 If Vds < Vdsat

 

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

 

 

[spacer]

 

 

 

 

Qs = -(Qg + Qb + Qd)

 

2.3.1.3.2.2 Else (Vds ³ Vdsat)

 

[spacer]

 

 

 

[spacer]

 

 

 

Qs = -(Qg + Qb + Qd)

 

 

[spacer]

 

 

 

 

2.3.1.3.3 Strong Inversion Region (Vgs > Vth): 0/100 Charge Partition

 

2.3.1.3.3.1 If Vds < Vdsat

 

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

 

Qs = -(Qg + Qb + Qd)

 

 

 

 

 

 

 

2.3.1.3.3.2 Else (Vds ³ Vdsat)

 

[spacer]

 

 

 

[spacer]

 

 

 

Qs = -(Qg + Qb)

 

Qd = 0

 

2.3.2 CAPMOD = 1

2.3.2.1 Flatband Voltage

 

[spacer]

 

 

Note 

The bias dependencies given for the threshold voltage Vth in the I-V Model Equations section are not considered in calculating the flatband voltage Vfb for CAPMOD=1.

 

2.3.2.2 If (Vgs < Vfb + Vbs + Vgsteffcv)

 

Qg1 = WactiveLactiveCox(Vgs - Vfb -Vbs -Vgsteffcv)

 

2.3.2.3 If (Vgs ³ Vfb + Vbs + Vgsteffcv)

 

 

[spacer]

 

 

 

Qb1 = -Qg1

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

2.3.2.4 If (Vds £ Vdsat)

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

2.3.2.4.1 50/50 Channel-charge Partition

 

 

[spacer]

 

 

 

 

2.3.2.4.2 40/60 Channel-charge Partition

 

[spacer]

 

 

 

Qd = -(Qg + Qb + Qs)

 

2.3.2.4.3 0/100 Channel-charge Partition

 

 

[spacer]

 

 

 

 

Qd = -(Qg + Qb + Qs)

 

2.3.2.5 If (Vds > Vdsat)

 

[spacer]

 

 

 

[spacer]

 

 

 

2.3.2.5.1 50/50 Channel-charge Partition

 

[spacer]

 

 

 

2.3.2.5.1 40/60 Channel-charge Partition

 

[spacer]

 

 

Qd = -(Qg + Qb + Qs)

 

2.3.2.5.1 0/100 Channel-charge Partition

 

[spacer]

 

 

 

Qd = -(Qg + Qb + Qs)

 

 

 

 

2.3.3 CAPMOD = 2

 

[spacer]

 

 

Note 

The bias dependencies given for the threshold voltage Vth in the I-V Model Equations section are not considered in calculating the flatband voltage Vfb for CAPMOD=2.

 

Qg = -(Qinv + Qacc + Qsub0 +dQsub)

 

Qb = Qacc + Qsub0 +dQsub

 

Qinv = Qs + Qd

 

 

[spacer]

 

 

V3 = Vfb-Vgb - d3, d3 = 0.02

 

Qacc = -WactiveLactiveCox(VFBeff -Vfb)

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

[spacer]

 

 

V4 = Vdsat,cv-Vds - d4, d4 = 0.02

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

2.3.3.1 50/50 Charge Partition

 

 

 

 

 

 

2.3.3.2 40/60 Channel Partition

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

 

 

 

2.3.3.3 0/100 Channel Partition

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

2.3.4 CAPMOD = 3 (Charge-Thickness Model)

 

[spacer]

 

 

Note 

The bias dependencies given for the threshold voltage Vth in the I-V Model Equations section are not considered in calculating the flatband voltage Vfb for CAPMOD=3.

 

[spacer]

 

 

d3 = 0.02

 

 

[spacer]

 

 

V0 = Vfb + Vfbeff -Vgs -d3

 

 

[spacer]

 

 

 

V3 = Vfb + Vbseff -Vgs -d3

 

 

[spacer]

 

 

 

[spacer]

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

V1 = Vdsat -Vds -d3

 

 

[spacer]

 

 

 

 

[spacer]

 

 

 

 

 

[spacer]

 

 

 

 

 

 

 

 

 

2.3.4.1 50/50 Charge Partition

 

 

 

 

 

 

2.3.4.2 40/60 Charge Partition

 

[spacer]

 

 

 

 

 

 

 

[spacer]

 

 

 

 

 

 

 

2.3.4.3 0/100 Charge Partition

 

 

[spacer]

 

 

 

 

 

 

[spacer]

 

 

 

 

 




HFSS视频教学培训教程 ADS2011视频培训教程 CST微波工作室教程 Ansoft Designer 教程

                HFSS视频教程                                      ADS视频教程                               CST视频教程                           Ansoft Designer 中文教程


 

      Copyright © 2006 - 2013   微波EDA网, All Rights Reserved    业务联系:mweda@163.com